
Exam Stochastic Processes 2WB08 - March 10, 2009, 14.00-17.00

The number of points that can be obtained per exercise is mentioned between square brackets. The
maximum number of points is 40. Good luck!!

1. (a) [2 pts.] Let X1, X2, . . . be random variables such that the partial sums Sn =
∑n

i=1 Xi

determine a martingale. Show that E(XiXj) = 0 if i 6= j.
Solution: Suppose i < j and remark that Xj = Sj − Sj−1. Then

E(XiXj) = E(E(Xi(Sj − Sj−1)|S0, S1, . . . , Sj−1))

= E(XiE((Sj − Sj−1)|S0, S1, . . . , Sj−1))

= E(Xi(Sj−1 − Sj−1)) = 0 .

(b) [3 pts.] Let (Zn)n≥0 be the size of the nth generation of an ordinary branching process
with Z0 = 1 and with family size Z1 having mean E(Z1) = µ and variance Var(Z1) = σ2.
Using the properties of conditional expectation, compute the mean E(Zn) and show that
the variance is given by

Var(Zn) =

{
nσ2 if µ = 1
σ2(µn−1)µn−1

µ−1 if µ 6= 1.

Hint: Recall that Zn =
∑Zn−1

i=1 Yi, where (Yi)i≥1 is a sequence of i.i.d. random variable
with E(Y1) = µ and Var(Y1) = σ2.
Solution: We have

E(Zn) = E

Zn−1∑
i=1

Yi


= E

E

Zn−1∑
i=1

Yi|Zn−1


= E(Zn−1E(Y1))

= µE(Zn−1) .

By iteration it is found E(Zn) = µn.
A similar computation for the second moment E(Z2

n) yields the recursion relation

Var(Zn) = µ2Var(Zn−1) + σ2µn−1

which is solved by the claimed expression for Var(Zn).

(c) [3 pts.] Let η be the probability that the branching process ultimately becomes extinct.
Define M

(1)
n = µ−nZn and M

(2)
n = ηZn . Check that both the processes (M (1)

n )n≥1 and
(M (2)

n )n≥1 are martingales.
Hint: for M

(2)
n use that η is given by the smallest non-negative root of the equation s =

G(s), where G(s) = E(sZ1) is the probability generating function of the family size.
Solution: This was done during the lecture.

(d) [2 pts.] Using the martingale M
(1)
n , show that E(ZnZm) = µn−mE(Z2

m) for m ≤ n. Hence
find the correlation coefficient ρ(Zm, Zn) in term of µ (you might use the result of item
(b)). We recall the definition

ρ(Zm, Zn) =
cov(Zm, Zn)√
var(Zm)var(Zn)



Solution: Using the martingale M
(1)
n we immediately have E(Zn|Zm) = Zmµn−m. Hence E(ZmZn|Zm) =

Z2
mµn−m and E(ZmZn) = E(E(ZmZn|Zm)) = E(Z2

m)µn−m. Thus we have

cov(Zm, Zn) = E(Z2
m)µn−m − E(Zn)E(Zm) = µn−mVar(Zm) ,

and, by the result of item (b),

ρ(Zm, Zn) =

{ √
µn−m(1− µm)/(1− µn) if µ 6= 1√
m/n if µ = 1

2. Let (Bt)t≥0 be a standard Wiener process and let (Xt)t≥0 be a standard Brownian motion
process with drift µ > 0.

(a) [1 pt.] For θ ∈ R show that the process (Mt)t≥0 defined by Mt = exp
(
θBt − θ2t

2

)
is a

martingale.
Solution: This has been proved during the lecture.

(b) [3 pts.] Let a > 0 and Ta = inf{t ≥ 0 : Bt = a}. By making use of the martingale in the
previous item, compute the Laplace transform E(e−λTa) where λ > 0.
Solution: Ta is a stopping time and the martingale stopping theorem can be applied (why?) to
the martingale Mt. We have

1 = E
(

exp

(
θBTa −

θ2Ta

2

))
Remark that BTa = a. Thus, choosing θ =

√
2λ, we find

E(e−λTa) = e−
√

2λ a

(c) [2 pts.] Conclude from (b) that E((Ta)−1) = a−2.
Hint: Use the identity x−1 =

∫∞
0

e−λxdλ for x > 0.
Solution:

E
(

1

Ta

)
=

∫ ∞

0

E(e−λTa)dλ =

∫ ∞

0

e−
√

2λ adλ =
1

a2
.

(d) [2 pts.] Let a > 0 and τa = inf{t ≥ 0 : Xt = a}. Use again the above martingale to show
that the following expression holds

E(e−λτa) = e−a(
√

µ2+2λ−µ)

where λ > 0.
Solution: Notice that Xt = Bt + µt and use the stopping theorem as in item (b). The final result

is obtained by choosing θ =
√

µ2 + 2λ− µ.

(e) [2 pts.] Compute the mean E(τa) and the variance Var(τa).
Solution: Define g(λ) = E(e−λτa). Then

E(τa) = − lim
λ→0+

dg(λ)

dλ

Starting from the g(λ) of the previous item, an immediate computation yields E(τa) = x
µ
. A

similar computation with the second derivative of g(λ) allows to compute the second moment,

from which it is found Var(τa) = x
µ3 .



3. A staircase is constructed such that the kth stair has width Wk and height Hk, where W1,H1,W2,H2, . . .
are nonnegative i.i.d. random variables with distribution function

F (x) = P(H1 ≤ x) = P(W1 ≤ x) = 1− 20
(1 + x)2

, x ≥ 0.

(a) [1 pts.] Show that E[H1] = 20.
Solution: We have

E[H1] =

∫ ∞

0

(1− F (u)) du =

∫ ∞

0

20

(1 + u)2
du = 20 ·

∫ ∞

1

1

w2
dw = 20.

(b) [3 pts.] Let D(h) be the number of stairs needed to reach at least a total height h. Calculate
the limit limh→∞ E[D(h)]/h.
Solution: The successive heights H1, H2, . . . form a renewal process with renewal function E[D(H)],
hence

lim
h→∞

E[D(h)]

h
=

1

E[H1]
=

1

20
.

(c) [3 pts.] Let L(h) =
∑D(h)

k=1 Wk denote the total length of the construction. Derive the limit
of the steepness E[L(h)]/h of the stairway as the height h tends to ∞.
Solution: Consider the renewal process from (a). Taking W1, W2, . . . as rewards, we see that L(h)
is the total reward. We have from the renewal reward theorem

lim
t→∞

E[L(h)]/h =
E[W1]

E[H1]
= 1.

(d) [3 pts.] Find the equilibrium distribution F̃e(x) of F (x). Assuming that h is very large,
give an estimate for the probability P(Z(h) ≥ 3) for the overshoot Z(h) over the height h
(see figure). Solution:

F̃e(x) =

∫ x

0
P(H1 > u) du

E[H1]
=

∫ x

0
20

(1+u)2
du

20
=

∫ x+1

1

1

u2
du =

x

1 + x
.

Z(h) is equivalent to the time to the next event in a renewal process with interarrival times

H1, H2, . . .. We know from the lecture, that the distribution converges to the equilibrium distri-

bution F̃e(x). Hence, if h is large, P(Z(h) > 20) ≈ 1− 3
4

= 1
4
.

Hint: Note that H1,H2, . . . form a renewal process.

4. Buses arrive at a bus stop according to a renewal process with interarrival times X1, X2, . . .
(measured in minutes), so that the first bus arrives at time X1. We assume that the X1, X2, . . .
are i.i.d. with E[X1] < ∞ and E[X2

1 ] < ∞.



(a) [2 pts.] Some busses are green, the others are red. The probability that an arbitrary bus
is red is given by p ∈ (0, 1]. The color of a bus is independent from the color of the other
busses and independent of X1, X2, . . .. Let τ be the time of the first arrival of a red bus.
Show that E[τ ] = E[X1]/p.
Hint: What is the distribution of the number of green busses arriving before τ?
Solution: We have K ∈ {0, 1, . . .} and has a geometric distribution with success probability p and
E[K] = (1− p)/p. Since K is independent of X1, X2, . . . it follows from Wald’s equation that

E[τ ] = E[

K∑
k=1

Xk] + E[X1] = E[K]E[X1] + E[X1] =
E[X1]

p
.

(b) [2 pts.] Let Mt denote the number of red busses minus the number of green busses that
arrived during the time interval (0, t]. Show that

lim
t→∞

E[Mt]
t

=
2p− 1
E[X1]

.

Solution: Let Rt denote the number of red busses. Then

lim
t→∞

E[Rt]

t
=

1

E[τ ]
=

p

E[X1]

and similarly for Gt, the number of green busses,

lim
t→∞

E[Gt]

t
=

1− p

E[X1]
.

Then

lim
t→∞

E[Rt −Gt]

t
=

1

E[τ ]
=

2p− 1

E[X1]
.

(c) [3 pts.] Assume that people arrive with constant rate 1 person/min to the bus stop. At the
time a bus arrives, all waiting passengers receives 1/p Euros if the bus is red and 1/(1− p)
Euros if the bus is green. Let Ct denote the total amount of money spend after time t by
the bus company. Show that

lim
t→∞

E[Ct]
t

= 2.

Solution: Let Ck denote the money that the company has to pay when bus k arrives. Then
E[Ck] = ( 1

p
· p + 1

1−p
(1− p))E[X1] = 2E[X1] and by the renewal reward theorem

lim
t→∞

E[Ct]

t
=

E[Ck]

E[X1]
= 2.

(d) [3 pts.] At time t let At denote the time that went by since the last bus arrived and Bt the
time until the next bus arrives. Sketch the process Jt =

∫ t

0
min{As, Bs} ds. By using an

appropriate renewal reward process, show that

lim
t→∞

E[Jt]
t

=
E[X2

1 ]
4E[X1]

.

Solution:



Let JTk be the reward at time Tk, where Tk = X1 + X2 + . . . + Xk. Then (draw the process!)

E[JTk ] = E[
1

4
X2

k ],

since the area under the process min{As, Bs} between Tk−1 and Tk (one cycle) is equal to one

quarter of the square with area Xk × Xk. The result follows from renewal theory for reward

processes.


