
Exam Stochastic Processes 2WB08 - January 15, 2009, 14.00-17.00

The number of points that can be obtained per exercise is mentioned between square
brackets. The maximum number of points is 40. Good luck!!

1. Let X and Z be two random variables. We define V ar(X|Z) as

V ar(X|Z) = E(X2|Z)− (E(X|Z))2

(a) [3 pts.] Show that the following identity holds

V ar(X) = E(V ar(X|Z)) + V ar(E(X|Z))

Solution: We have

E(V ar(X|Z)) = E(E(X2|Z))− E((E(X|Z))2)
= E(X2)− E((E(X|Z))2)

and

V ar(E(X|Z)) = E((E(X|Z))2)− (E(E(X|Z)))2

= E((E(X|Z))2)− (E(X))2

Adding up (side by side) the previous equations the claim is proved.

(b) [3 pts.] Using the previous result prove the following: if Y1, Y2, . . . are i.i.d.
random variables and N is an independent integer valued random variable and
X = Y1 + Y2 + . . . + YN then

V ar(X) = E(N)V ar(Y1) + (E(Y1))2V ar(N)

Solution: We apply the previous result with X = Y1 + Y2 + . . . + YN and Z = N . We
have

E(V ar(X|N)) = E(E(X2|N))− E((E(X|N))2)
= E(NE(Y 2

1 ) + N(N − 1)E(Y1Y2))− E(N2(E(Y1))2)
= E(N)V ar(Y1)

and

V ar(E(X|N)) = E((E(X|N))2)− (E(E(X|N)))2

= E(N2(E(Y1))2)− (E(NE(Y1)))2

= E(N2)(E(Y1))2 − (E(N))2(E(Y1))2

= (E(Y1))2V ar(N)

Adding up (side by side) the previous equations the claim is proved.



(c) [2 pts.] Consider the “random harmonic serie” Mn =
∑n

j=1
1
j Xj where X1, X2, . . .

is a sequence of i.i.d. random variables with P(Xi = 1) = P(Xi = −1) = 1/2.
Show that (Mn)n∈N (with M0 = 0) is a discrete time martingale process.
Solution: It is enough to show that Mn is a martingale with respect to the sequence
of random variables (Xi)i∈N. We have E(|Mn|) < ∞ and

E(Mn+1|X1, . . . , Xn) = Mn +
1

n + 1
E(Xn+1|X1, . . . , Xn) = Mn

because the Xi’s are centered i.i.d. random variables.

(d) [2 pts.] It is known that the harmonic serie 1 + 1
2 + 1

3 + 1
4 + . . . is divergent,

while the alternating harmonic serie 1 − 1
2 + 1

3 + 1
4 + . . . is convergent. What

would you say on the convergence property of the “random harmonic serie”?
Study the convergence in the almost sure sense.
Solution: The martingale is L2-bounded. Indeed

E(M2
n) = E(

n∑

k=1

n∑

j=1

1
k

Xk
1
j
Xj) =

n∑

j=1

1
j2

<

∞∑

j=1

1
j2

< ∞

By martingale convergence theorem the process (Mn)n∈N has a limit and the limit is
finite with probability one. Thus the “random harmonic serie” is convergent in the
almost sure sense.

2. Let (Bt)t≥0 be a standard Wiener process.

(a) [1 pt.] For θ ∈ R show that the process (Mt)t≥0 defined by Mt = exp
(
θBt − θ2t

2

)

is a martingale.
Solution: This has been proved during the lecture.

(b) [2 pts.] Let a > 0 and T = inf{t ≥ 0 : Bt /∈ (−a, a)}. By making use of the
martingale in the previous item, compute the Laplace transform E(e−λT ) where
λ > 0.
Solution: T is a stopping time and the martingale stopping theorem can be applied
(why?) to the martingale Mt. We have

1 = E
(

exp
(

θBT − θ2T

2

))

By symmetry P(BT = a) = P(BT = −a) = 1/2 and BT is independent of T . Thus

1 = cosh(θa)E
(

exp
(
−θ2T

2

))

Take θ =
√

2λ to find

E(e−λT ) =
1

cosh(a
√

2λ)



(c) [2 pts.] Use the result of the previous item to compute the expected time E(T ).
Solution: Define g(λ) = E(e−λT ). Then

E(T ) = − lim
λ→0+

dg(λ)
dλ

Starting from the g(λ) of the previous item, an immediate computation yields E(T ) =
a2. The same result was obtained during the lecture by applying the martingale stop-
ping theorem to the martingale B2

t − t.

(d) [3 pts.] Compute the probability P(B2 > 0|B1 > 0). Hint: to compute an
integral use polar coordinates.
Solution: From the definition of conditional probability it follows

P(B2 > 0|B1 > 0) =
P(B2 > 0, B1 > 0)

P(B1 > 0)

The denominator equal 1/2 by symmetry. The numerator is given by

P(B2 > 0, B1 > 0) =
1
2π

∫ +∞

0

dx1

∫ +∞

0

dx2 exp
(
−x2

1

2

)
exp

(
− (x2 − x1)2

2

)

To compute this integral we first make the change of variables x = x1, y = x2 − x1

P(B2 > 0, B1 > 0) =
1
2π

∫ +∞

0

dx

∫ +∞

−x

dy exp
(
−x2

2

)
exp

(
−y2

2

)

and then we go to polar coordinates x = r cos θ, y = r sin θ

P(B2 > 0, B1 > 0) =
1
2π

∫ π/2

−π/4

dθ

∫ +∞

0

dr r exp
(
−r2

2

)
=

3
8

Thus we have

P(B2 > 0|B1 > 0) =
P(B2 > 0, B1 > 0)

P(B1 > 0)
=

3
4

(e) [2 pts.] Are the events B1 > 0 and B2 > 0 independent?
Solution: No, because P(B2 > 0|B1 > 0) 6= P(B2 > 0).

3. Consider a renewal process N(t) with Xk denoting the time between the (k − 1)th
and the kth event and suppose that E(X1) < ∞.

(a) [2 pts.] Let K(t, s) be equal to the number of events during the time interval
(t, t+ s] divided by the duration s. Show, by using the results from the lecture,
that, if F (x) = P(X1 ≤ x) is nonlattice,

lim
t→∞E(K(t, s)) = lim

s→∞E(K(t, s)) =
1

E(X1)
.

Solution: We have K(t, s) = (N(t + s)−N(t))/s and hence

lim
t→∞

E(K(t, s)) =
m(t + s)−m(t)

s
=

1
E(X1)



by Blackwell’s theorem. Moreover

lim
s→∞

E(K(t, s)) =
m(t + s)

t + s

t + s

s
− m(t)

s
=

1
E(X1)

by the elementary renewal theorem.

(b) [3 pts.] Let M(t) = 1
N(t)

∑N(t)
k=1 (Xk − E(Xk))2 and assume that E(X2

1 ) < ∞.
Show that limt→∞M(t) = V ar(X1) with probability one.
Solution: We know that t/N(t) → E(X1). Define a renewal reward process with Rk =
(Xk − E(Xk))2, then by the renewal reward theorem

R(t)
t

→ E((Xk − E(Xk))2)
E(X1)

=
V ar(X2)
E(X1)

.

Note that (X1 − E(X1))2 < ∞ follows from E(X2
1 ) < ∞. Consequently

lim
t→∞

M(t) = lim
t→∞

R(t)
N(t)

= lim
t→∞

R(t)
t

· t

N(t)
= V ar(X1).

(c) [3 pts.] Suppose that X1 is integer valued, i.e. P(X1 = k) = pk, with probabil-
ities pk ∈ [0, 1] and p1 + p2 + . . . = 1. Show, by conditioning on X1, that the
renewal function satisfies the discrete renewal equation

m(n) =
n∑

k=0

(1 + m(n− k)) · pk , n = 1, 2, . . . .

Solution: We have

m(n) = E(N(n)) =
∞∑

k=0

E(N(n)|X1 = k)P(X1 = k)

=
n∑

k=0

E(1 + N(n− k))pk.

(d) [2 pts.] Suppose that P(X1 = 0) = 1− p and P(X1 = 1) = p for some p ∈ (0, 1].
Find an explicit formula for m(n).
Solution: We have

m(0) = (1 + m(0))(1− p)

so m(0) = 1−p
p . Moreover

m(n) = (1 + m(n))(1− p) + p(1 + m(n− 1)),

so that

m(n) =
1
p

+ m(n− 1) =
2
p

+ m(n− 2) = . . . =
n + 1− p

p
.



4. A G/M/1/1 queueing system consists of a single server with capacity one. Arriv-
ing (potential) customers are rejected and leave immediately if there is already a
customer in service. If an arriving customer finds the system empty, he/she enters
immediately and leaves the system as soon as the service is completed. We assume
that the service times are exponential with mean 1/λ and the interarrival times are
given by i.i.d. random variables Z1, Z2, . . ., with distribution function F (x), mean
µ < ∞ and Laplace transform φ(λ) = E(e−λZ1) =

∫∞
0 e−λz dF (z). We suppose that

the first customer arrives at time 0, so that Z1 denotes the time between the first
and the second arrival.

(a) [3 pts.] Let T be the time, when the second service begins and let C be the
number of customers that arrive during (0, T ]. Show that

P(C = k) = φ(λ)k−1(1− φ(λ)) , k = 1, 2, . . .

Solution: The probability p that the second customer arrives after the completion of
the first service is given by (we condition on the length of the first service time)

∫ ∞

0

(1− F (z))λe−λz dz = 1−
∫ ∞

0

e−λz dF (z) = 1− φ(λ).

If the second customer arrives before the first service is completed then the remaining
(first) service is again exponentially distributed. It follows that the number M of
arriving customers during the first service time is geometric,

P(M = k) = (1− p)kp , k = 0, 1, . . . ,

and the result follows from the fact that C = M + 1.

(b) [3 pts.] Show that the Laplace transform and the mean of T are given by

E(e−sT ) =
(1− φ(λ))φ(s)
1− φ(λ)φ(s)

and E(T ) =
µ

1− φ(λ)
.

Hint: express T in terms of Z1, Z2, . . . and C.
Solution: Since T = Z1 + . . . + ZC , we have

E(e−sT ) =
∞∑

k=1

E(e−sT |C = k)P(C = k)

= (1− φ(λ))
∞∑

k=1

E(e−s(Z1+Z2+...+Zk))φ(λ)k−1

=
1− φ(λ)

φ(λ)

∞∑

k=1

φ(s)kφ(λ)k =
(1− φ(λ))φ(s)
1− φ(s)φ(λ)

.

It follows that

E(T ) = − d

ds

(1− φ(λ))φ(s)
1− φ(s)φ(λ)

∣∣
s=0.

= −(1− φ(λ))
φ′(s)(1− φ(s)φ(λ)) + φ′(s)φ(s)φ(λ)

(1− φ(s)φ(λ))2
∣∣
s=0.

=
µ

1− φ(λ)
.



(c) [4 pts.] Let W (t) denote the number of customers in the system. Find the limit
distribution limt→∞ P(W (t) = 1).
Solution: W (t) defines an alternating renewal process, switching from on (W (t) = 1)
to off (W (t) = 0) whenever a customer leaves the system. According to the limit
theorem for alternating renewal processes we have

lim
t→∞

P(W (t) = 1) =
E(X)

E(X + Y )
=

1− φ(λ)
λµ

.


