Exam Stochastic Processes 2WB08 - March 13, 2007, 14.00-17.00

The number of points that can be obtained per exercise is mentioned between square brackets. The maximum number of points is 40. Good luck!!

Problem 1: Consider a renewal process with distribution $F(\cdot)$ of the times between successive renewals. Let m(t) denote the renewal function of this process. a) [3 pt.] Argue that m(t) satisfies the following equation:

$$m(t) = F(t) + \int_0^t m(t-x) \mathrm{d}F(x), \quad t \ge 0.$$

Let $F(t) = 1 - e^{-t/\mu}, t \ge 0.$

b) [2 pt.] Derive an expression for m(t).

c) [2 pt.] Derive an expression for the expectation of the time of occurrence of the first renewal after t.

d) [3 pt.] Use alternating renewal processes to derive an expression for the limiting distribution of the residual time Y(t) from t until the first renewal after t: $\lim_{t\to\infty} P(Y(t) \le x)$.

Problem 2: Let $(S_n)_{n\geq 0}$ be a simple symmetric random walk on \mathbb{Z} , i.e. $S_n = \sum_{i=1}^n X_i$ $(S_0 = 0)$, with $(X_i)_{i\geq 0}$ a sequence of i.i.d. random variables such that $\mathbb{P}(X_i = 1) = \mathbb{P}(X_i = -1) = \frac{1}{2}$. For a fixed $a \in \mathbb{N}$ define

$$T = \min\{n \in \mathbb{N} : |S_n| = a\}.$$

a) [2 pt.] Show that $M_n = S_n^2 - n$ and $N_n = S_n^4 - 6nS_n^3 + 3n^2 + 2n$ are martingales.

b) [2 pt.] State the martingale stopping theorem.

c) [2 pt.] Show that $\mathbb{E}(T) = a^2$ and $\mathbb{E}(T^2) = \frac{a^2}{3}(5a^2 - 2)$.

Consider now the case of a biased random walk, namely $\mathbb{P}(X_i = 1) = p > \frac{1}{2}$ and $\mathbb{P}(X_i = -1) = q = 1 - p < \frac{1}{2}$. Define $Y_n = e^{bS_n - cn}$ for constants b and c. Define also

$$T_1 = \min\{n \in \mathbb{N} : S_n = 1\}.$$

d) [2 pt.] Derive a necessary relation between the constants b and c in order that Y_n is a martingale.

e) [2 pt.] Find the moment generating function $\mathbb{E}(e^{-cT_1})$ for c > 0.

Problem 3: Consider the simple random walk: $P(X_i = 1) = p$, $P(X_i = -1) = 1 - p$, $i = 1, 2, ..., and <math>S_n = \sum_{i=1}^n X_i$, $n = 1, 2, ..., with S_0 = 0$. X has the same distribution as the X_i . Suppose $0 . Let <math>\theta \neq 0$ be such that $E[e^{\theta X}] = 1$.

a) [2 pt.] Give the distribution of S_n .

b) [2 pt.] Argue that $\{Z_n, n = 0, 1, ...\}$ with $Z_n = e^{\theta S_n}$ is a martingale.

c) [2 pt.] Let A > 0, B > 0 and define the stopping time N as $N = \min\{n : S_n = A \text{ or } S_n = -B\}$. Find an expression for the probability P_A that the random walk reaches A before it reaches -B. d) [2 pt.] Use Jensen's inequality $(E[f(X)] \ge f(E[X]))$ for f convex) to show that $\theta > 0$.

e) [2 pt.] Prove that the probability that the random walk ever reaches A is bounded by $e^{-\theta A}$.

Problem 4: Let $\{X(t), t \ge 0\}$ be a standard Brownian motion and let $M(t) = \max_{0 \le s \le t} X(s)$. Define

$$Y(t) = \exp\{cX(t) - c^2 t/2\}, \quad t \ge 0$$

where c is any constant.

a) [2 pt.] Define X(t) is a standard Brownian motion.

b) [2 pt.] Show that $\{Y(t), t \ge 0\}$ is a martingale with mean 1.

c) [2 pt.] Is Y(t) a Brownian motion? Motivate your answer.

d) [2 pt.] Derive the distribution of M(t) - X(t).

e) [2 pt.] Show that

$$\mathbb{P}(M(t) > a | M(t) = X(t)) = \exp(-a^2/2t), \quad a > 0.$$

Solution problem 2:

a) The integrability condition is trivial for both M_n and N_n . Since $S_{n+1} = S_n + X_{n+1}$, an immediate computation shows that

$$\mathbb{E}(S_{n+1}^2|X_0,\dots,X_n) = S_n^2 + 1$$

and

$$\mathbb{E}(S_{n+1}^4|X_0,\dots,X_n) = S_n^4 + 6S_n^2 + 1$$

From these it follows the martingale property easily, both for M_n and N_n .

b) See Ross book, Th. 6.2.2, page 300.

c) The martingale stopping theorem is applicable to both martingales M_n and N_n with the stopping time T. Indeed we have $|S_{T \wedge n}| \leq a \ \forall n \in \mathbb{N}$ and one can also prove that $\mathbb{P}(T < \infty) = 1$ (this was done during the lecture). We then have $\mathbb{E}(M_T) = \mathbb{E}(M_0) = 0$ and $\mathbb{E}(N_T) = \mathbb{E}(N_0) = 0$. On the other hand

$$\mathbb{E}(M_T) = \mathbb{E}(S_T^2) - \mathbb{E}(T) = a^2 - \mathbb{E}(T)$$

and

$$\mathbb{E}(N_T) = \mathbb{E}(S_T^4) - 6\mathbb{E}(TS_T^2) + 3\mathbb{E}(T^2) + 2\mathbb{E}(T) = a^4 - 6a^2\mathbb{E}(T) + 3\mathbb{E}(T^2) + 2\mathbb{E}(T).$$

From these you derive the claimed results.

d) The integrability condition does not imply any constraint. Indeed, since $|S_n| \leq n$

$$\mathbb{E}(|Y_n|) = \mathbb{E}(e^{bS_n - cn}) \le e^{(b-c)n} < \infty \qquad \forall n \in \mathbb{N}$$

For the martingale property to hold we require $\mathbb{E}(Y_{n+1}|X_0,\ldots,X_n) = Y_n$. This implies

$$b = \ln\left(\frac{e^c \pm \sqrt{e^{2c} - 4pq}}{2p}\right)$$

e) If the martingale stopping theorem is applicable to the martingale Y_n with the stopping time T_1 , it follows that $\mathbb{E}(Y_{T_1}) = \mathbb{E}(Y_0) = 1$. This implies that

$$\mathbb{E}(e^{-cT_1}) = e^{-b}$$

To be the stopped process uniformly bounded we require b > 0. In order for this to be true we have to choose the positive root of $pe^{2b} - e^{b+c} + q = 0$. Thus

$$\mathbb{E}(e^{-cT_1}) = e^{-b} = \frac{2p}{e^c + \sqrt{e^{2c} - 4pq}}$$

indent