
Exam Stochastic Processes 2WB08 - March 25, 2008, 14.00-17.00

Problem 2: Let (Xi)i≥1 be a i.i.d. sequence of random variables with distribution

Xi =





1 with probability p
0 with probability r
−1 with probability q

where p, q, r > 0. Let (Sn)n≥1 = S0 +
∑n

i=1 Xi be a discrete time random walk starting at
S0 = m ∈ N at time zero.

a) [2 pt.] Define (Yn)n≥1 =
(

q
p

)Sn

. Show that (Yn)n≥1 is a martingale and that for any positive

integer n one has E(Yn) =
(

q
p

)m
.

b) [2 pt.] Let T be the time until the walker reaches either 0 or N for the first time, where N
is an integer greater than m. Compute E(YT ). If you apply the martingale stopping theorem
remember to check that the hypothesis for the applicability of the theorem are satisfied.
c) [3 pt.] Assuming p 6= q, compute the probability that, starting from m, the walker reaches 0
before it reaches N .
d) [3 pt.] In the case p = q you may assume that probability of the previous item is P(ST =
0 | S0 = m) = (N −m)/N . Now define Zn = S2

n − 2np. Prove that (Zn)n≥1 is a martingale and
show that the expected time until absorption is given by

E(T |S0 = m) =
m(N −m)

2p

Problem 4: Let B(t) be a standard Wiener process. For β > 0 and σ > 0, consider the process

Y (t) = e−βt σ√
2β

B(e2βt − 1) .

a) [1 pt.] Show that the distribution of Y (t) is normal N
(
0, σ2

2β (1− e−2βt)
)

.
b) [2 pt.] Is Y (t) a Gaussian process? Compute its covariance Cov(Y (s)Y (t)).
c) [2 pt.] Show that in the limit t, s →∞ with finite |t− s| the process becomes stationary. We
recall that a process is said to be stationary if Y (t1), . . . , Y (tn) has the same joint distributions
of Y (t1 + h), . . . , Y (tn + h) for all t1, . . . , tn, h, n.
d) [3 pt.] Compute the instantaneous mean a(t, y) and the instantaneous variance b(t, y) of Y (t)
defined as

E(Y (t + h)− Y (t) | Y (t) = y) = a(t, y) h + o(h) ,

E((Y (t + h)− Y (t))2 | Y (t) = y) = b(t, y) h + o(h) .

e) [2 pt.] Find a stationary solution for the Kolmogorov forward differential equation

∂

∂t
p(y, t) = − ∂

∂y
(a(t, y)p(y, t)) +

1
2

∂2

∂y2
(b(t, y)p(y, t))

Hint.: This can be obtained by imposing ∂
∂tp(y, t) = 0.
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Solution problem 2:
a) The integrability condition E(|Sn|) < ∞ is obvious. It is enough to check that Sn has the
martingale property w.r.t. Xn. We have

E (Yn+1|X1, . . . , Xn) = E

((
q

p

)Sn+Xn+1

|X1, . . . , Xn

)
(1)

=
(

q

p

)Sn

E

((
q

p

)Xn+1

|X1, . . . , Xn

)
(2)

=
(

q

p

)Sn
(

q

p
p +

p

q
q + r

)
(3)

= Yn (4)

The expectation of a martingale does not depend on the time, that is E(Yn+1) = E(Yn), as it
is immediately seen by taking expectations in the previous relation. This implies that E(Yn) =
E(Y0) =

(
q
p

)m
.

b) T is a stopping time w.r.t. the martingale Yn and the stopped process is bounded:

Yn∧T =
(

q

p

)Sn∧T

=

{ (
q
p

)N
if p < q

1 if p > q

Applying the optional stopping theorem one has

E(YT ) = E(Y0) = (q/p)m

c) Combining together

E(YT ) = (q/p)NP(ST = N |S0 = m) + (q/p)0P(ST = 0|S0 = m)

and
P(ST = N |S0 = m) + P(ST = 0|S0 = m) = 1

one finds that

P(ST = N |S0 = m) =
(q/p)m − (q/p)N

1− (q/p)N

d) We have

E (Zn+1|X1, . . . , Xn) = E
(
S2

n + 2SnXn+1 + X2
n+1 − 2(n + 1)p|X1, . . . , Xn

)
(5)

= S2
n + 2SnE(Xn+1) + E(X2

n+1)− 2(n + 1)p (6)
= S2

n + 2p− 2(n + 1)p (7)
= Zn (8)

Applying the optimal stopping theorem we get

E(ZT ) = E(Z0) = m2

and

E(ZT ) = E(S2
T )− 2pE(T ) = N2P(St = N |S0 = m)− 2pE(T ) = N2 m

N
− 2pE(T ) .
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This implies the required expression for E(T ).

Solution problem 4:

a) For a standard Brownian motion one has that B(t) is N(0, t) distributed. For a continu-
ous mapping φ : R+ → R+, B(φ(t)) is N(0, φ(t)) distributed. Considering φ(t) = e2βt − 1 and
observing that Y (t) is a linear transformation of B(φ(t)) the claim immediately follows.

b) Since B(t) is Gaussian it follows that Y (t) is also Gaussian. We know that the covari-
ance of Brownian montion: E(B(t)B(s)) = t∧ s. The mapping φ(t) is monotonically increasing.
This implies

E(B(φ(t))B(φ(s))) = φ(t) ∧ φ(s) = e2β(t∧s) − 1 .

We then have

E(Y (t)Y (s)) = E
(

e−βt σ√
2β

B(φ(t))e−βs σ√
2β

B(φ(s))
)

= e−β(t+s) σ2

2β
(e2β(t∧s) − 1)

=
σ2

2β

[
e−β|t−s| − e−β(t+s)

]

c) Since the process Y (t) is Markov and Gaussian, all finite dimensional joint distributions are
obtained from the mean and covariance. Then a necessary and sufficient condition for Y (t) to
be stationary is that the mean E(Y (t)) does not depend on t and the Cov(Y (t), Y (s)) depends
only on |t− s|. This is obviously the case if one consider the limit described in the exercise.
d) Let us compute first the following conditional expectation

E(B(φ(t + h)) | B(φ(t)) = x) .

Since Brownian motion has stationary independent increments we have

E(B(φ(t + h)) | B(φ(t)) = x) =
1√

2π(φ(t + h)− φ(t))

∫

R
w exp

(
− (w − x)2

2(φ(t + h)− φ(t))

)
dw

=
1√

2π(φ(t + h)− φ(t))

∫

R
(x + z) exp

(
− z2

2(φ(t + h)− φ(t))

)
dz

= x (9)

where in the last line we used the change of variable z = w − x. To compute the instantaneous
mean a(t, y) we evaluate

E(Y (t + h) | Y (t) = y) = E
(

e−β(t+h) σ√
2β

B(φ(t + h)) | e−βt σ√
2β

B(φ(t)) = y

)

= e−β(t+h) σ√
2β
E

(
B(φ(t + h)) | B(φ(t)) =

√
2β

σ
eβty

)

Making use of Eq.(9) we arrive to

E(Y (t + h) | Y (t) = y) = e−β(t+h)eβty

= ye−βh
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from which it is found

E(Y (t + h)− Y (t) | Y (t) = y) = y
(
e−βh − 1

)
= −βyh + o(h)

Therefore a(y, t) = −βy. In a similar way, to evaluate the instantaneous variance b(t, y) we
compute

E(Y (t + h)2 | Y (t) = y) = E
(

e−2β(t+h) σ2

2β
B(φ(t + h))2 | e−βt σ√

2β
B(φ(t)) = y

)

= e−2β(t+h) σ2

2β

(
E(B(φ(t + h))2 | B(φ(t)) =

√
2β

σ
eβty

)

Using the fact that

E(B(φ(t + h))2 | B(φ(t)) = x) =
1√

2π(φ(t + h)− φ(t))

∫

R
w2 exp

(
− (w − x)2

2(φ(t + h)− φ(t))

)
dw

=
1√

2π(φ(t + h)− φ(t))

∫

R
(x + z)2 exp

(
− z2

2(φ(t + h)− φ(t))

)
dz

= x2 + φ(t + h)− φ(t) (10)

and recalling again Eq. (9) we find

E(Y (t + h)2 | Y (t) = y) = e−2β(t+h) σ2

2β

(
e2βty2 2β

σ2
+ φ(t + h)− φ(t)

)

= e−2β(t+h)

(
e2βty2 +

σ2

2β

(
e2β(t+h) − e2βt

))

= e−2βhy2 +
σ2

2β

(
1− e−2βh

)

We finally have

E((Y (t + h)− Y (t))2 | Y (t) = y) = E(Y (t + h)2 − 2Y (t + h)Y (t) + Y (t)2 | Y (t) = y)
= E(Y (t + h)2 | Y (t) = y)− 2yE(Y (t + h) | Y (t) = y) + y2

= e−2βhy2 +
σ2

2β

(
1− e−2βh

)
− 2y2e−βh + y2

= σ2h + o(h) .

This yields the instantaneous variance b(t, y) = σ2.
e) One immediately obtain that in the limit ∂

∂tp(y, t) = 0 the solution is

p(t, y) =
1√

2π σ2

2β

exp

(
− y2

2σ2

2β

)
.

That is, in the stationary state, the distribution of Y is N(0, σ2

2β ), as it can be also deduced by
taking the limit t →∞ in a).
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