Exam Stochastic Processes 2WBO08 - March 25, 2008, 14.00-17.00

Problem 2: Let (X;);>1 be a ii.d. sequence of random variables with distribution

1 with probability p
X; =4 0  with probability r
—1 with probability ¢

where p,q,7 > 0. Let (Sp)n>1 = So + > X; be a discrete time random walk starting at
So = m € N at time zero.

Sn
a) [2 pt.] Define (Y,)n>1 = (%) . Show that (Y},)n>1 is a martingale and that for any positive

integer n one has E(Y,) = (%)m

b) [2 pt.] Let T be the time until the walker reaches either 0 or N for the first time, where N
is an integer greater than m. Compute E(Y7). If you apply the martingale stopping theorem
remember to check that the hypothesis for the applicability of the theorem are satisfied.

¢) [3 pt.] Assuming p # ¢, compute the probability that, starting from m, the walker reaches 0
before it reaches N.

d) [3 pt.] In the case p = ¢ you may assume that probability of the previous item is P(Sp =
0] So=m)=(N—m)/N. Now define Z,, = S — 2np. Prove that (Z,),>1 is a martingale and
show that the expected time until absorption is given by

m(N —m)

B(T]So = m) = =

Problem 4: Let B(t) be a standard Wiener process. For 5 > 0 and o > 0, consider the process

Y(t) = e_ﬁtﬁ B(e®t —1) .

a) [1 pt.] Show that the distribution of Y (¢) is normal N (O, %(1 — e_%t))

b) [2 pt.] Is Y(t) a Gaussian process? Compute its covariance Cov(Y (s)Y(t)).
c) [2 pt.] Show that in the limit ¢, s — oo with finite |t — s| the process becomes stationary. We
recall that a process is said to be stationary if Y (¢1),...,Y (¢,) has the same joint distributions
of Y(ti +h),....Y(t, + h) for all t,...,t,, h,n.
d) [3 pt.] Compute the instantaneous mean a(¢,y) and the instantaneous variance b(t,y) of Y (¢)
defined as

EY (t+h) =Y () [Y(t) =y) = alt,y) h+o(h) ,

E((Y(t+h) =Y (0))* | Y(t) = y) = b(t,y) h + o(h) .

e) [2 pt.] Find a stationary solution for the Kolmogorov forward differential equation

2
55p(0:0) = 5 {alt )bl 0) + 5 55 0(t, V(0. 1)

Hint.: This can be obtained by imposing %p(y, t) = 0.



Solution problem 2:
a) The integrability condition E(|S,|) < oo is obvious. It is enough to check that S,, has the
martingale property w.r.t. X,. We have

q Sn+Xn+1
E(Yyii|X1,...,X,) = E (p) X1, ..., Xn (1)

()]
= () Grere)

- Y, (4)

The expectation of a martingale does not depend on the time, that is E(Y,+1) = E(Y},), as it
is immediately seen by taking expectations in the previous relation. This implies that E(Y;,) =

E(vy) = ()"

b) T is a stopping time w.r.t. the martingale Y;, and the stopped process is bounded:
SnAT q N .
Yoar = <q> = (17> ifp<q
p 1 ifp>gq
Applying the optional stopping theorem one has

E(Yr) = E(Yo) = (¢/p)™

¢) Combining together
E(Yr) = (¢/p)"P(St = N|So = m) + (¢/p)°P(St = 0|Sp = m)
and
P(ST = N’SO = m) +]P>(ST = 0’S0 = m) =1
one finds that

P(Sy = N|So = m) = D" = (a/p)™

1—(g/p)V
d) We have
E(Zns1|X1,. ., Xn) = E(SE 428 Xn41 + X5y —2(n+ 1)p|X1, ..., Xy) (5)
= S2+25.E(Xpp1) + E(Xp ) — 2(n + 1)p (6)
= S 4 2p—2(n+1)p (7)
= Zn (8)

Applying the optimal stopping theorem we get
E(Zr) = E(Zy) = m?
and

E(Z7) = E(S%) — 2pE(T) = N?P(S; = N|Sy = m) — 2pE(T) = N2% — 2pR(T) .



This implies the required expression for E(T).
Solution problem 4:

a) For a standard Brownian motion one has that B(t) is N(0,¢) distributed. For a continu-
ous mapping ¢ : RT — Rt B(¢(t)) is N(0,$(t)) distributed. Considering ¢(t) = €2%* — 1 and
observing that Y (¢) is a linear transformation of B(¢(t)) the claim immediately follows.

b) Since B(t) is Gaussian it follows that Y'(¢) is also Gaussian. We know that the covari-
ance of Brownian montion: E(B(t)B(s)) = t A's. The mapping ¢(t) is monotonically increasing.
This implies

E(B(¢(1))B(¢(5))) = o(t) A g(s) = /") — 1.

We then have

E(V(HY(s) = E (Q‘;ﬁ B<¢<t>>e-ﬂ53<¢<s>>)
02 tAs
= P T (@) )

2
— [e—mt—sl_e—ﬂ(m)

20

c) Since the process Y (t) is Markov and Gaussian, all finite dimensional joint distributions are
obtained from the mean and covariance. Then a necessary and sufficient condition for Y (¢) to
be stationary is that the mean E(Y(¢)) does not depend on ¢ and the Cov(Y (t),Y (s)) depends
only on |t — s|. This is obviously the case if one consider the limit described in the exercise.

d) Let us compute first the following conditional expectation

E(B(¢(t + 1)) | B((t)) = ) .
Since Brownian motion has stationary independent increments we have

1 2

BB+ R) | BOW) =) = oo [ wes (—2( -
1 22
N 0) /R(x 7 exp (_2<¢(t Th) - ¢(t))> 4

9)

where in the last line we used the change of variable z = w — z. To compute the instantaneous
mean a(t,y) we evaluate

(w — )

- ¢<t>>> e

g

B((0) - y)
_ meﬁty>

E(Y(t+h) |Y(t)=y) = E <e—ﬁ<t+h>\/;ﬁ3(¢(t +h)) | e P

e Bt 7
E <B(¢>(t + 1) | B(@(t))

Making use of Eq.(9) we arrive to

B(Y(t+h) | Y(t)=y) = e Bmeity
= ye_fgh‘



from which it is found

E(Y(t+h) = Y(t) | Y(t)=y) =y (e = 1) = ~Byh + o(h)

Therefore a(y,t) = —pPy. In a similar way, to evaluate the instantaneous variance b(t,y) we
compute
2
E(Y(t+h)?|Y(t)=y) = E(NWMWB t+1)? | e = B(g(t) = >
Y(E+h)"|Y(H)=y) 55 DO+ R)7| m@b()) Y
2
= B (BB + 0P | Blon) = Yoty )
o

Using the fact that

2 =X = 1 U}2eX — (w_x)z w
BB+ )| Beb) =) = =t >>/R p< 2<¢<t+h>—¢<t>>>d
= ! X 22€X — Z2 z
© et = a) L+ o (~sarar=amy) ¢
= a4 gt +h) — (1) (10)

and recalling again Eq. (9) we find

0.2
E(Y(t+h)?|Y(t)=y) = 6*25(”'”% ( Wyt 2 () - ¢(t)>

—  —2B(t+h) ( 2[315 2, 2; ( 268(t+h) _ 62ﬂt))
_ _—2Bh, 2 o’ —28h
= e Y+ % (1 —e )
We finally have
E(Y(t+h)-Y®)?|Y(t)=y) = EX(t+h)?-2Y(t+n)Y(t)+Y () |Y(t)=y)
= E(Y(t+h)?[Y(t)=y) = 29E(Y(t+h) | Y(t) = y) +
2
— W2 % (1 _ eﬁﬁh) —oyPePh 4 2
= o’h+o(h).

This yields the instantaneous variance b(t,y) = o2.

e) One immediately obtain that in the limit %p(y, t) = 0 the solution is

1 y?
p(t,y) = = exp (— 02) :
1/27‘(% 235

That is, in the stationary state, the distribution of Y is N (0, 25), as it can be also deduced by
taking the limit ¢ — oo in a).



