Exam Stochastic Processes 2WB08 - March 14, 2008, 14.00-17.00

The number of points that can be obtained per exercise is mentioned between square brackets. The maximum number of points is 40. Good luck!!

Problem 1: Consider a renewal process $\{N(t), t \geq 0\}$ with interrenewal times X_1, X_2, \ldots with distribution $F(\cdot)$ and mean μ . Let $m(t)$ denote the renewal function of this process. Let $S_n = \sum_{i=1}^n X_i$, with $S_0 = 0$.

a) [3 pt.] Prove that $ES_{N(t)+1} = \mu[m(t)+1]$.

b) [2 pt.] Use this to show that $\liminf_{t\to\infty} \frac{m(t)}{t} \geq \frac{1}{\mu}$ $\frac{1}{\mu}$.

c) [2 pt.] Introduce $\bar{X}_n = \min(X_n, M)$ to prove that $\limsup_{t \to \infty} \frac{m(t)}{t} \leq \frac{1}{\mu}$ $\frac{1}{\mu}$.

d) [3 pt.] Suppose that $F(x) = 1 - e^{-x/\mu}$. What is, for this case, $\lim_{t\to\infty} P(X_{N(t)+1} \leq x)$ and the mean of this limiting distribution?

Problem 2: Let $(X_n)_{n>0}$ be a discrete time Markov chain with countable state space S and transition matrix P. Let $h : S \to \mathbb{R}$ be a function with the properties that

i)
$$
\sum_{j \in S} P_{i,j} h(j) = h(i) \quad \forall i \in S
$$

ii)
$$
\mathbb{E}(|h(X_n)|) < \infty \quad \forall n \ge 0
$$

a) [3 pt.] Show that $M_n = h(X_n)$ is a martingale with respect to X_n .

b) [2 pt.] Construct a martingale in the case that property i) is replaced by

$$
i') \qquad \sum_{j \in S} P_{i,j} h(j) = \lambda h(i) \quad \forall i \in S, \quad \lambda \in \mathbb{R}
$$

c) [2 pt.] Let $(X_n)_{n\in\mathbb{N}_0}$ be a Markov chain with state space \mathbb{N}_0 and transition probabilities

$$
p(x, x + 1) = p_x \quad \text{for } x \ge 0,
$$

\n
$$
p(x, x - 1) = q_x \quad \text{for } x \ge 1,
$$

\n
$$
p(x, x) = r_x \quad \text{for } x \ge 0
$$

and $p(x, y) = 0$ for all other pairs (x, y) ; here $p_x, q_x, r_x \ge 0$ with $p_x + q_x + r_x = 1$. Define

$$
\phi(j) = \sum_{i=1}^{j-1} \frac{q_1 q_2 \cdots q_i}{p_1 p_2 \cdots p_i}
$$

Show that $\phi(X_n)$ constitutes a martingale.

d) [3 pt.] Fix $n, m_1, m_2 \in \mathbb{N}$ such that $m_1 < n < m_2$. Let $\pi(n)$ be the probability that the process hits m_2 before it reaches m_1 , having started at n. Show that

$$
\pi(n) = \frac{\phi(n) - \phi(m_1)}{\phi(m_2) - \phi(m_1)}.
$$

Problem 3: Consider a random walk $\{S_n, n \geq 0\}$ with $S_n = \sum_{i=1}^n X_i$, $S_0 = 0$. Let $X_i = U_i - V_i$, with U_i , V_i independent, identically distributed and nonnegative random variables; U_i is exponentially distributed with mean a and V_i is exponentially distributed with mean $b > a$. Let $\theta \neq 0$ be such that $E[e^{\theta X}] = 1$.

a) [2 pt.] Determine θ .

b) [2 pt.] Give the distribution of S_n , as well as the Laplace-Stieltjes transform of this distribution.

c) [2 pt.] Argue that $\{Z_n, n = 0, 1, ...\}$ with $Z_n = e^{\theta S_n}$ is a martingale.

d) [2 pt.] Let $A > 0$, $B > 0$ and define the stopping time N as $N = \min\{n : S_n = A \text{ or } S_n = -B\}.$ Find an expression for the probability P_A that the random walk reaches A before it reaches $-B$. e) [2 pt.] Prove that the probability that the random walk ever reaches A is bounded by $e^{-\theta A}$.

Problem 4: Let $W(t)$ denote a standard Wiener process.

a) [3 pt.] Write down the definition of the process called Brownian bridge. Show that the covariance function of this process is $c(s, t) = \min\{s, t\} - st$ with $0 \leq s, t \leq 1$.

b) [2 pt.] Define $Z_1(t) = W(t) - tW(1)$. Show that $\{Z_1(t) : 0 \le t \le 1\}$ is a Brownian bridge.

c) [2 pt.] Define $Z_2(t) = (1-t)W\left(\frac{t}{1-t}\right)$ for $0 \le t < 1$ and $Z_2(1) = 0$. Show that $\{Z_2(t) : 0 \le t \le 1\}$ $t \leq 1$ is a Brownian bridge.

d) [3 pt.] Let $0 < s < t < 1$. Show that the probability that the Brownian bridge has no zero in the interval (s, t) is $\frac{2}{\pi} \arccos \sqrt{\frac{t-s}{t(1-s)}}$. *Hint*: use one of the two previous representations above of the Brownian Bridge in terms of Wiener process. You might assume the knowledge of the arcsine law for Wiener process.