Exam Stochastic Processes 2WB08 – January 29, 2007, 14.00-17.00

The number of points that can be obtained per exercise is mentioned between squure brackets. The maximum number of points is 40. Good luck!!

Problem 1:

A light bulb burns for an amount of time having distribution $F(\cdot)$, with Laplace transform $\phi(\cdot)$ of the density, and with mean μ and second moment μ_2 . When the light bulb burns out, it is immediately replaced by another light bulb which has the same life time distribution $F(\cdot)$, etc. Let m(t) be the mean number of replacements of light bulbs upto time t.

a) [2 pt.] Show that $m(t) = \sum_{n=1}^{\infty} F_n(t), t \ge 0$, with $F_n(t)$ the *n*-fold convolution of F(t) with itself.

b) [2 pt.] Show that $\mu(s) = \int_0^\infty e^{-st} dm(t)$ equals $\frac{\phi(s)}{1-\phi(s)}$.

c) [2 pt.] Let $F(\cdot)$ be an Erlang-2 distribution, so having density $(\frac{2}{\mu})^2 t e^{-2t/\mu}$, t > 0. Show that $\mu(s) = \frac{1}{\mu s} - \frac{1}{\mu s + 4}$.

d) [2 pt.] Use c) to show that $m(t) = \frac{t}{\mu} - \frac{1}{4}(1 - e^{-4t/\mu}), t \ge 0.$

e) [2 pt] Consider the excess or residual life Y(t) of the light bulb burning at time t. Determine an expression for $\lim_{t\to\infty} \mathbb{P}(Y(t) \leq x)$.

Problem 2:

Let $(X_n)_{n\geq 0}$ be a sequence of random variables such that $\mathbb{E}(X_n^2) < \infty$ and $\mathbb{E}(X_{n+1} | X_0, \dots, X_n) = 0$ for all $n \in \mathbb{N}$. Define $S_n = \sum_{i=1}^n X_i$ to be the partial sum (with $S_0 = 0$) and consider the sequence

$$M_n = S_n^2 - \sum_{k=0}^{n-1} \mathbb{E}(X_{k+1}^2 | X_0, \dots, X_k)$$

a) [2 pt.] Give the definition of a martingale.

b) [3 pt.] Show that $(M_n)_{n>0}$ is a martingale.

c) [2 pt.] Give the definition of a stopping time T with respect to a sequence $(S_n)_{n>0}$.

d) [3 pt.] Let T_1 and T_2 be two stopping times with respect to a sequence $(S_n)_{n\geq 0}$. Decide whether the following are stopping times with respect to the same sequence: $T_1 + T_2$, min (T_1, T_2) , max (T_1, T_2) .

Problem 3:

Let $(B_t)_{t\geq 0}$ be a standard Brownian motion. Define, for a > 0 and b < 0

$$T = \inf\{u \ge 0 : B_u \in \{a, b\}\}.$$

a) [2 pt.] Show that B_t is a martingale.

b) [3 pt.] By applying the stopping theorem to the martingale $(B_t)_{t\geq 0}$ and the stopping time T show that

$$\mathbb{P}(B_T = a) = \frac{-b}{a-b}.$$

Define now

$$M_t = \int_0^t B_u du - \frac{1}{3} B_t^3 \,.$$

c) [3 pt.] Show that $(M_t)_{t>0}$ is a martingale.

d) [2 pt.] Deduce that the expected area under the path of B_t until it first reaches one of the levels a or b is

$$-\frac{1}{3}ab(a+b)$$
 .

Hint: apply once more the stopping theorem, this time to the martingale $(M_t)_{t\geq 0}$.

Problem 4:

Consider the G/G/1 queue, with i.i.d. interarrival times X_i and i.i.d. service times Y_i , $i = 1, 2, \ldots$, and $EY_i < EX_i$. Let D_n denote the delay (waiting time) of the *n*-th arriving customer, n = 1, 2, ... Let $D_1 = 0$.

a) [2 pt.] Argue that $D_{n+1} = \max(0, D_n + Y_n - X_{n+1}), n = 1, 2, ...$ b) [3 pt.] Let $U_n = Y_n - X_{n+1}$ and $S_n = \sum_{j=1}^n U_j, n = 1, 2, ...$ Show that

 $\mathbb{P}(D_{n+1} \ge c) = \mathbb{P}(\max(0, S_1, S_2, \dots, S_n) \ge c).$

c) [5 pt.] Use Spitzer's identity, viz., $\mathbb{E}[\max(0, S_1, S_2, \dots, S_n)] = \sum_{k=1}^n \frac{1}{k} \mathbb{E}[\max(0, S_k)]$, to show the following if the X_i are exponentially distributed with mean $1/\lambda$ and the Y_i are

exponentially distributed with mean $1/\nu$: $\mathbb{E}D_{n+1} = \sum_{k=1}^{n} \frac{1}{k} \sum_{i=0}^{k-1} \frac{k-i}{\nu} {k+i-1 \choose i} (\frac{\lambda}{\lambda+\nu})^k (\frac{\nu}{\lambda+\nu})^i$. *Hint: use either the approach of the book, or the one from class.*