Exam Stochastic Processes 2WB08 — January 29, 2007

Problem 1:

A light bulb burns for an amount of time having distribution F(-), with Laplace trans-
form ¢(-) of the density, and with mean p and second moment 5. When the light bulb
burns out, it is immediately replaced by another light bulb which has the same life time
distribution F'(-), etc. Let m(¢) be the mean number of replacements of light bulbs upto
time ¢.

a) [2 pt.] Show that m(t) => 7 F,(t), t > 0, with F},(¢) the n-fold convolution of F(t)
with itself.

b) [2 pt.] Show that p(s) = [ e™*'dm(t) equals 1¢(4f())

c) [2 pt.] Let F(-) be an Erlang—2 distribution, so having density (2)*e~ 2/1 t > 0. Show
that u(s) = i — M51+4

d) [2 pt.] Use c) to show that m(t) = 1 — 3(1 - e Myt >0.
e) [2 pt] Consider the excess or residual life Y (¢) of the light bulb burning at time t.

Determine an expression for lim; . P(Y(¢) < z).

Solution Problem 1:

a) Let N(t) denote the number of replacements up to time t. Then {N(¢),t > 0} is a
renewal process. The inter-arrival times X, Xo, ... are i.i.d. with distribution F'(-), then
the partial sum S,, = Y1, X is distributed like F},(-), the n-fold convolution of F(-) with
itself. We have

m(t) =E(N(1) = SP(N(t) > n) = S B(S, <) = 3 Fu()

b) You can either condition on the first arrival time or you might compute:

) = [ e am(e = [ *stdZF

Exchanging integration and sum

p(s) = S 0" = 1251

c¢) Using integration by parts one finds

fo%S) 2 2 2 2
. “ —2t/p —st .
o) _/o (u) te et = <2+u8)

From the result b) one has

() 1 1

§)=— —

a us  pus+4

d) From the proposed m(t) we have dm(t) = m/(t)dt = (i - ie*‘“/“) dt so that u(s) =
J” e stdm(t) equals = i M81+4 as it should. This implies that m(t) = ﬁ + i 4 C
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where C' is a constant to be determined. On the other hand we know that m(0) = 0 which
yields C' = —%.
e)

lim,_ o P(Y(£) < z) = / " Fly)dy/u

For a proof see Prop. 3.4.5 on the Ross book.

Problem 2:
Let (X,,)n>0 be a sequence of random variables such that E(X?) < oo and E(X,,,1| Xo, ..., X,) =
0 for all n € N. Define S,, = """ | X; to be the partial sum (with Sy = 0) and consider

the sequence
n—1

M, =8} =Y E(X? | Xo,...,Xz)
k=0

a) [2 pt.] Give the definition of a martingale.
b) [3 pt.] Show that (M,,),>o is a martingale.
c) [2 pt.] Give the definition of a stopping time 7" with respect to a sequence (.S,,)n>0.
d) [3 pt.] Let 71 and T3 be two stopping times with respect to a sequence (S, ),>0. Decide
whether the following are stopping times with respect to the same sequence: T7 + T5,
min(7y, T5), max (7}, T5).

Solution problem 2:
a) A sequence (M,),>o of random variables is called a martingale if for all n the following

holds:
E(’Mn‘) <00 and E(Mn+1’M0>"'7Mn) :Mn

b) We show that (M,),>o is a martingale with respect to (X,,)n>0. Note that

n—1

E(|M,]) <E(S}) + > EEXZ| Xo,. .., Xk)) .
k=0

From the properties of conditional expectation one has E(E(X72, | Xo, ..., Xy)) = E(XZ2, ).
The integrability condition E(|M,|) < oo for all n € N then follows from the hypothesis
E(X?) < oo. Furthermore,

E(Mn+1|X07"')Xn) = ]E(|:STQL+1 _ZE<XI§+1|X07)Xk)]|X077XTL)
k=0
= ]E(Si + 2‘Sn)(n-i—l + X73+1| X07 cee 7Xn) +

=Y E(E(X7 | Xo, ., X)| Xo, .., Xy)
k=0
_ Q2 2 _ - 2
= S2HEX2 X0 X)) = > E(X2| Xo, ., X2)

k=0
= M,



where in the second to third line we have used the hypothesis E(X,,11]| Xo,...,X,) =0
and the properties of conditional expectations. Hence, (M,),>0 is a martingale with
respect to (X, )n>0, and thus, it is a martingale.

¢) A random variable 7" with values in N U {0} U {oo} is called a stopping time with
respect to (Sy,)n>o0 if {T'=n} € o(Sy,...,S,) for all n > 0.

d) They are all stopping time, as it is shown by observing that

n

{T\+ Ty =n} = |JUTy =k} N {Th = n— k}]

{min(71,T3) <n} ={Th <n}U{T, <n}
{max(T1,T3) < n} ={T1 <n}N{Ty <n}

Problem 3:
Let (Bi)i>0 be a standard Brownian motion. Define, for a > 0 and b < 0

T=inf{u>0:B, € {a,b}}.

a) [2 pt.] Show that B; is a martingale.
b) [3 pt.] By applying the stopping theorem to the martingale (B;):>o and the stopping
time 1" show that

—b
]P)(BT:CL): a—b'
Define now .
1
M, = / B, du — —Bf’.
0 3

c) [3 pt.] Show that (M,;);>o is a martingale.
d) [2 pt.] Deduce that the expected area under the path of B; until it first reaches one of
the levels a or b is

1
—gab(a +b).

Hint: apply once more the stopping theorem, this time to the martingale (M;);>o.

Solution problem 3:
a) Write B; as B, + (B; — B;) and utilize independent increments:

E(Bi By,0 <u<s) = E(B|By,,0<u<s)+E(B;— Bs| B,,0 <u<s5s)
= B, +E(B,— By)
= B, (1)
b) The application of the stopping theorem yields E(Br) = E(By) = 0. We have E(Br) =
aP(Br = a) + bP(Br = b) and P(By = a) + P(Br = b) = 1. From this we deduce that

P(By = a) = a__bb . (2)




c¢) To show that (M;);>o is a martingale we prove that Vs < ¢
E(M;| B,,0 <u <s)= M, (3)

We have

t s t
E(/ Budu]Bu,O§u§s> = E(/ Budu\Bu,0§u§s>+E(/ Budu\Bu,0§u§s>
0 0 s

s t
— /Budu—i—E</ (Bu—Bs—l—Bs)du\Bu,Ogugs)
0 s
S t
_ /Budu+/ E(B, — B.)du + B.(t — s)
0 s

- /0 Budu + By(t — s) (4)

where in the third line we use the property of stationary independent increments for
Brownian motion. The same property gives also that

E(B?| B,,0 < u < s) = B4 3B,(t — s) (5)

Combining together (4) and (5) and using the definiton of M, proves (3).
d) From the application of the stopping theorem to the martingale (M;):>o it follows:

r 1
E(/ Budu—gB%> =0
0

Hence the required area A has mean

E(A) = E (/OT Budu) - %]E(B%) - éa?’ (a__bb> + %b?’ <a - b) - —%ab(a +b)

where we made use of the previous result (2) to evaluate the expectation.

Problem 4:

Consider the G/G/1 queue, with i.i.d. interarrival times X; and i.i.d. service times Y;,
i=1,2,...,and EY; < EX;. Let D,, denote the delay (waiting time) of the n-th arriving
customer, n =1,2,.... Let D; = 0.

a) [2 pt.] Argue that D, ,; = max(0,D, +Y, — X,11),n=1,2,....

b) 3 pt.] Let U, =Y, — X,,p1 and S, = > 77 Uj, n=1,2,.... Show that

P(D, 11 > ¢) = P(max(0, Sy, Ss, ..., S,) > c¢).

c) [5 pt.] Use Spitzer’s identity, viz., E[max(0, Sy, S2,...,S:)] = > r_, %E[maX(O, Si)], to
show the following if the X; are exponentially distributed with mean 1/\ and the Y; are
exponentially distributed with mean 1/v:

juted with 1 |
EDn = Yio 1 Lino 5 (0 ) (53) (25)"

Solution Problem 4:
a) The waiting time of the (n+1)-th customer is that of the n-th customer plus the service
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time of this job minus the interarrival time. Of course the delay can not be negative, which
implies D,, 11 = max(0, D,, +Y,, — X,,11).
b) By iterating the previous relation and using D; = 0 we have

Dn+1 = maX(O, Un7 Un + Un—l; Up+Upo1 + Un—Za R Up+Up1+...+ Ul)
Now

P(Dyy1 >c¢) = Pmax(0,U,, U, +Up1,Up+Up 1 +Upo,...,U,+U,1+...4+Up) > ¢)
P(max(0, Uy, Uy + Uy, Uy + Uy + Us, ..., Uy + Uy + ...+ U,) > ¢)
= ]P’(max((), Sl, 52, e ,Sn) > C)

where in the second line we used duality.

c¢) See Example 7.1B in the Ross book. Alternatively (as in class), observe that E[max(0, Sy)] =
E[Zle Y, — Zle Xi+1(2f:1 Y > Zle Xi41)] can be handled by observing that the lat-

ter difference, if positive, is with probability (Hzfl) (/\j\ry)k()\iy)" the sum of k£ — ¢ random
variables which are exp(v) distributed.




