
Exam Stochastic Processes 2WB08 – January 29, 2007

Problem 1:
A light bulb burns for an amount of time having distribution F (·), with Laplace trans-
form φ(·) of the density, and with mean µ and second moment µ2. When the light bulb
burns out, it is immediately replaced by another light bulb which has the same life time
distribution F (·), etc. Let m(t) be the mean number of replacements of light bulbs upto
time t.
a) [2 pt.] Show that m(t) =

∑∞
n=1 Fn(t), t ≥ 0, with Fn(t) the n-fold convolution of F (t)

with itself.
b) [2 pt.] Show that µ(s) =

∫∞
0

e−stdm(t) equals φ(s)
1−φ(s)

.

c) [2 pt.] Let F (·) be an Erlang-2 distribution, so having density ( 2
µ
)2te−2t/µ, t > 0. Show

that µ(s) = 1
µs
− 1

µs+4
.

d) [2 pt.] Use c) to show that m(t) = t
µ
− 1

4
(1− e−4t/µ), t ≥ 0.

e) [2 pt] Consider the excess or residual life Y (t) of the light bulb burning at time t.
Determine an expression for limt→∞P(Y (t) ≤ x).

Solution Problem 1:
a) Let N(t) denote the number of replacements up to time t. Then {N(t), t ≥ 0} is a
renewal process. The inter-arrival times X1, X2, . . . are i.i.d. with distribution F (·), then
the partial sum Sn =

∑n
i=1 Xi is distributed like Fn(·), the n-fold convolution of F (·) with

itself. We have

m(t) = E(N(t)) =
∞∑

n=1

P(N(t) ≥ n) =
∞∑

n=1

P(Sn ≤ t) =
∞∑

n=1

Fn(t)

b) You can either condition on the first arrival time or you might compute:

µ(s) =

∫ ∞

0

e−stdm(t) =

∫ ∞

0

e−std[
∞∑

n=1

Fn(t)]

Exchanging integration and sum

µ(s) =
∞∑

n=1

(φ(s))n =
φ(s)

1− φ(s)

c) Using integration by parts one finds

φ(s) =

∫ ∞

0

(
2

µ

)2

te−2t/µe−stdt =

(
2

2 + µs

)2

From the result b) one has

µ(s) =
1

µs
− 1

µs + 4

d) From the proposed m(t) we have dm(t) = m′(t)dt =
(

1
µ
− 1

µ
e−4t/µ

)
dt so that µ(s) =∫∞

0
e−stdm(t) equals 1

µs
− 1

µs+4
as it should. This implies that m(t) = t

µ
+ 1

4
e−4t/µ + C
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where C is a constant to be determined. On the other hand we know that m(0) = 0 which
yields C = −1

4
.

e)

limt→∞P(Y (t) ≤ x) =

∫ x

0

F̄ (y)dy/µ

For a proof see Prop. 3.4.5 on the Ross book.

Problem 2:
Let (Xn)n≥0 be a sequence of random variables such that E(X2

n) < ∞ and E(Xn+1|X0, . . . , Xn) =
0 for all n ∈ N. Define Sn =

∑n
i=1 Xi to be the partial sum (with S0 = 0) and consider

the sequence

Mn = S2
n −

n−1∑
k=0

E(X2
k+1|X0, . . . , Xk)

a) [2 pt.] Give the definition of a martingale.
b) [3 pt.] Show that (Mn)n≥0 is a martingale.
c) [2 pt.] Give the definition of a stopping time T with respect to a sequence (Sn)n≥0.
d) [3 pt.] Let T1 and T2 be two stopping times with respect to a sequence (Sn)n≥0. Decide
whether the following are stopping times with respect to the same sequence: T1 + T2,
min(T1, T2), max(T1, T2).

Solution problem 2:
a) A sequence (Mn)n≥0 of random variables is called a martingale if for all n the following
holds:

E(|Mn|) < ∞ and E(Mn+1|M0, . . . ,Mn) = Mn

b) We show that (Mn)n≥0 is a martingale with respect to (Xn)n≥0. Note that

E(|Mn|) ≤ E(S2
n) +

n−1∑
k=0

E(E(X2
k+1|X0, . . . , Xk)) .

From the properties of conditional expectation one has E(E(X2
k+1|X0, . . . , Xk)) = E(X2

k+1).
The integrability condition E(|Mn|) < ∞ for all n ∈ N then follows from the hypothesis
E(X2

n) < ∞. Furthermore,

E(Mn+1|X0, . . . , Xn) = E(
[
S2

n+1 −
n∑

k=0

E(X2
k+1|X0, . . . , Xk)

]
|X0, . . . , Xn)

= E(S2
n + 2SnXn+1 + X2

n+1|X0, . . . , Xn) +

−
n∑

k=0

E(E(X2
k+1|X0, . . . , Xk)|X0, . . . , Xn)

= S2
n + E(X2

n+1|X0, . . . , Xn)−
n∑

k=0

E(X2
k+1|X0, . . . , Xk)

= Mn
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where in the second to third line we have used the hypothesis E(Xn+1|X0, . . . , Xn) = 0
and the properties of conditional expectations. Hence, (Mn)n≥0 is a martingale with
respect to (Xn)n≥0, and thus, it is a martingale.
c) A random variable T with values in N ∪ {0} ∪ {∞} is called a stopping time with
respect to (Sn)n≥0 if {T = n} ∈ σ(S0, . . . , Sn) for all n ≥ 0.
d) They are all stopping time, as it is shown by observing that

{T1 + T2 = n} =
n⋃

k=0

[{T1 = k} ∩ {T2 = n− k}]

{min(T1, T2) ≤ n} = {T1 ≤ n} ∪ {T2 ≤ n}
{max(T1, T2) ≤ n} = {T1 ≤ n} ∩ {T2 ≤ n}

Problem 3:
Let (Bt)t≥0 be a standard Brownian motion. Define, for a > 0 and b < 0

T = inf{u ≥ 0 : Bu ∈ {a, b}} .

a) [2 pt.] Show that Bt is a martingale.
b) [3 pt.] By applying the stopping theorem to the martingale (Bt)t≥0 and the stopping
time T show that

P(BT = a) =
−b

a− b
.

Define now

Mt =

∫ t

0

Budu− 1

3
B3

t .

c) [3 pt.] Show that (Mt)t≥0 is a martingale.
d) [2 pt.] Deduce that the expected area under the path of Bt until it first reaches one of
the levels a or b is

−1

3
ab(a + b) .

Hint: apply once more the stopping theorem, this time to the martingale (Mt)t≥0.

Solution problem 3:
a) Write Bt as Bs + (Bt −Bs) and utilize independent increments:

E(Bt|Bu, 0 ≤ u ≤ s) = E(Bs|Bu, 0 ≤ u ≤ s) + E(Bt −Bs|Bu, 0 ≤ u ≤ s)

= Bs + E(Bt −Bs)

= Bs (1)

b) The application of the stopping theorem yields E(BT ) = E(B0) = 0. We have E(BT ) =
aP(BT = a) + bP(BT = b) and P(BT = a) + P(BT = b) = 1. From this we deduce that

P(BT = a) =
−b

a− b
. (2)
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c) To show that (Mt)t≥0 is a martingale we prove that ∀s < t

E(Mt|Bu, 0 ≤ u ≤ s) = Ms (3)

We have

E
(∫ t

0

Budu|Bu, 0 ≤ u ≤ s

)
= E

(∫ s

0

Budu|Bu, 0 ≤ u ≤ s

)
+ E

(∫ t

s

Budu|Bu, 0 ≤ u ≤ s

)
=

∫ s

0

Budu + E
(∫ t

s

(Bu −Bs + Bs)du|Bu, 0 ≤ u ≤ s

)
=

∫ s

0

Budu +

∫ t

s

E(Bu −Bs)du + Bs(t− s)

=

∫ s

0

Budu + Bs(t− s) (4)

where in the third line we use the property of stationary independent increments for
Brownian motion. The same property gives also that

E(B3
t |Bu, 0 ≤ u ≤ s) = B3

s + 3Bs(t− s) (5)

Combining together (4) and (5) and using the definiton of Mt proves (3).
d) From the application of the stopping theorem to the martingale (Mt)t≥0 it follows:

E
(∫ T

0

Budu− 1

3
B3

T

)
= 0

Hence the required area A has mean

E(A) = E
(∫ T

0

Budu

)
=

1

3
E(B3

T ) =
1

3
a3

(
−b

a− b

)
+

1

3
b3

(
a

a− b

)
= −1

3
ab(a + b)

where we made use of the previous result (2) to evaluate the expectation.

Problem 4:
Consider the G/G/1 queue, with i.i.d. interarrival times Xi and i.i.d. service times Yi,
i = 1, 2, . . . , and EYi < EXi. Let Dn denote the delay (waiting time) of the n-th arriving
customer, n = 1, 2, . . . . Let D1 = 0.
a) [2 pt.] Argue that Dn+1 = max(0, Dn + Yn −Xn+1), n = 1, 2, . . . .
b) [3 pt.] Let Un = Yn −Xn+1 and Sn =

∑n
j=1 Uj, n = 1, 2, . . . . Show that

P(Dn+1 > c) = P(max(0, S1, S2, . . . , Sn) > c).
c) [5 pt.] Use Spitzer’s identity, viz., E[max(0, S1, S2, . . . , Sn)] =

∑n
k=1

1
k
E[max(0, Sk)], to

show the following if the Xi are exponentially distributed with mean 1/λ and the Yi are
exponentially distributed with mean 1/ν:
EDn+1 =

∑n
k=1

1
k

∑k−1
i=0

k−i
ν

(
k+i−1

i

)
( λ

λ+ν
)k( ν

λ+ν
)i.

Solution Problem 4:
a) The waiting time of the (n+1)-th customer is that of the n-th customer plus the service
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time of this job minus the interarrival time. Of course the delay can not be negative, which
implies Dn+1 = max(0, Dn + Yn −Xn+1).
b) By iterating the previous relation and using D1 = 0 we have

Dn+1 = max(0, Un, Un + Un−1, Un + Un−1 + Un−2, . . . , Un + Un−1 + . . . + U1)

Now

P(Dn+1 ≥ c) = P(max(0, Un, Un + Un−1, Un + Un−1 + Un−2, . . . , Un + Un−1 + . . . + U1) ≥ c)

= P(max(0, U1, U1 + U2, U1 + U2 + U3, . . . , U1 + U2 + . . . + Un) ≥ c)

= P(max(0, S1, S2, . . . , Sn) > c)

where in the second line we used duality.
c) See Example 7.1B in the Ross book. Alternatively (as in class), observe that E[max(0, Sk)] =
E[

∑k
i=1 Yi −

∑k
i=1 Xi+1(

∑k
i=1 Yi >

∑k
i=1 Xi+1)] can be handled by observing that the lat-

ter difference, if positive, is with probability
(

k+i−1
i

)
( λ

λ+ν
)k( ν

λ+ν
)i the sum of k− i random

variables which are exp(ν) distributed.

5


