
Course 2S620, Lecture 1
Introduction to Gibbs measure

C. Giardinà ∗
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1 Introduction

Statistical mechanics is concerned with the properties of matter in equilibrium in
the empirical sense used in thermodynamic. The aim of statistical mechanics is to
derive the equilibrium properties of a macroscopic system from the law of microscopic
molecular dynamics.

Macroscopic systems are characterized by few parameters. Think for example
of a gas whose thermodynamic behavior is fully specified by pressure, volume and
temperature. Each macrostate associated to some fixed values of the thermodynamic
variable is compatible, and hence is a summary of, many microstates.

To move from the detailed information contained in microstates to global informa-
tion of macrostates, statistical mechanics use a probabilistic approach. The question
is then what is the appropriate probability distribution to describe a physical macro-
scopic system made of many interacting components. The appropriate probability
distribution (or ensemble) is determined by physical macroscopic constraints on the
system. Isolated systems are studied with the microcanonical ensemble, for which the
energy is fixed. Systems in contact with an heat reservoir are treated making use of
the canonical ensemble for which the temperature is fixed. If the number of compo-
nents in the system is very large, the two ensembles gives equivalent descriptions.

In this first lecture we introduce the general setting of statistical mechanics by
looking at the simplest possible model, namely the ideal gas (non interacting par-
ticle). We will justify through large deviations the principle of maximum entropy
that leads Boltzmann to develop the kinetic theory of gases. Then we will introduce
the microcanonical ensemble and argue its equivalence with the canonical ensemble.
Making use of the ideal gas system we will motivate the introduction of general Gibbs
measure, which are the one to be studied in statistical mechanics. We conclude with
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the statement of Gärtener-Ellis theorem which express the large deviation property
for sequence of dependent random variables.

2 The ideal gas

Consider the following set-up. Let (Xi)i≥1 be a sequence of i.i.d. random vari-
ables taking values in a finite set Ω = {x1, x2, . . . , xr} and having marginal law
ρ = (ρ1, . . . , ρr).We assume the x′is to the ordered, that is x1 < x2 < . . . < xr.
We think of Ω as the set of possible outcomes of a random experiment in which each
individual outcome xi has probability ρi of occurring. For each positive integer n, the
configuration space for n independent repetitions of the experiment is the product
space

Ωn = Ω× Ω · · · × Ω︸ ︷︷ ︸
n times

A typical configuration of Ωn is denoted by ω = (ω1, ω2, . . . , ωn). Of course, we have
that the probability of each configuration ω ∈ Ωn is given by the product measure
with one dimensional marginal ρ, that is

Pn(ω) =
n∏

i=1

ρ(ωi)

For a given realization ω of the i.i.d. random variables (Xi)i=1,...,n, we use the notation
that Xi(ω) = ωi.

The discrete ideal gas consists of n identical non-interacting particles, each having
energy levels x1, x2, . . . , xr. For a configuration ω ∈ Ωn we define Hn(ω), the total
energy in the configuration ω, as

Hn(ω) =
n∑

i=1

ωi

In the absence of further information, one assigns the equal probabilities ρi = 1/r to
each of the xi. This is one of the fundamental assumption made by Boltzmann in
its original works on the ideal gas. Classical statistical mechanics is founded on the
following postulate.

Postulate of Equal a Priori Probability. When a macroscopic system is in
thermodynamic equilibrium, its state is equally likely to be any state satisfying the
macroscopic conditions of the system.

In the following we want to understand how the equilibrium state is affected
by macroscopic constraints in the so called thermodynamic limit, that is when the
number of particles n → ∞ . For isolated systems the condition to be imposed is
the conservation of the total energy Hn. Before treating this case we recall how the
equilibrium state is determined in the absence of any constraint. This is given by
Sanov’s theorem and it will be a first application of the maximum entropy principle.
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3 Boltzmann entropy principle and Sanov theorem

We recall the definition of the empirical measure for the model introduced in the
previous section. The empirical measure Ln is the empirical probability vector given
by

Ln(ω) = (Ln,1(ω), . . . , Ln,r(ω))

=
1

n

(
n∑

i=1

δXi(ω)(x1), . . . ,
n∑

i=1

δXi(ω)(xr)

)

where δx(y) is the Kronecker delta function. In words, Ln(ω) counts the relative
frequency with which x appears in the configuration ω. Ln is a random probability
measure which takes values in the set of probability vectors

M1 =

{
γ = (γ1, γ2, . . . , γr) ∈ [0, 1]r :

r∑
s=1

γs = 1

}

The limiting behavior of Ln as n →∞ is determined by the Sanov theorem, which
we now recall in a heuristic formulation. Let || · || denote the Euclidean norm on Rr.
For any γ ∈M and ε > 0 define the open ball

B(γ, ε) = {ν ∈M : ||γ − ν|| < ε}

Since the Xj have common distribution ρ, then for each i = 1, . . . , r we have

E(Ln,i(ω)) = E

(
1

n

n∑
j=1

δXj(ω)(xi)

)
=

1

n

n∑
j=1

P(Xj(ω) = xi) = ρi .

Hence by the weak law of large numbers we have, for any ε > 0

lim
n→∞

Pn(Ln ∈ B(ρ, ε)) = 1

It follows that for any γ not equal to ρ and for any ε > 0 satisfying 0 < ε < ||ρ− γ||

lim
n→∞

Pn(Ln ∈ B(γ, ε)) = 0

Sanov’s theorem implies that the probability in the previous expression converges to
0 exponentially fast and the exponential decay rate is given by the relative entropy.

Theorem 3.1. Define the relative entropy Iρ(γ) of γ with respect to ρ as

Iρ(γ) =
r∑

s=1

γs log
γs

ρs

(3.2)

Then the sequence of empirical vectors Ln satisfies the large deviation principle on
M1 in the following sense.
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(a) Large deviation upper bound.

lim sup
n→∞

1

n
log Pn(Ln ∈ C) ≤ − inf

γ∈C
Iρ(γ) ∀ closed C ⊆M1 (3.3)

(b)Large deviation lower bound.

lim inf
n→∞

1

n
log Pn(Ln ∈ O) ≤ − inf

γ∈O
Iρ(γ) ∀ open O ⊆M1 (3.4)

The relative entropy Iρ(γ) measure the discrepancy between γ and ρ, in the sense
that Iρ(γ) ≥ 0 and Iρ(γ) = 0 if and only if γ = ρ. Thus Iρ(γ) ≥ 0 attains its infimum
of 0 over M at the unique measure γ = ρ. Also Iρ(γ) is strictly convex (see exercise
3).

We may heuristically express the large deviation using a formal notation. Then
the theorem can be rewritten as

Theorem 3.5.
Pn(Ln ∈ B(γ, ε)) ≈ exp[−nIρ(γ)] (3.6)

where Iρ(γ) is the relative entropy of γ with respect to ρ

Proof. In order to appreciate the original computations performed by Boltzmann we
give here an heuristic proof of Sanov’s theorem in the formal notation. This is just
a simple computation concerning the asymptotic behavior of multinomial coefficient.
We may write

Pn(Ln ∈ B(γ, ε)) = Pn

{
ω ∈ Ωn : Ln(ω) ∼ 1

n
(nγ1, nγ2, . . . , nγr)

}
≈ Pn

{
#(ω′js = x1) ∼ nγ1, . . . , #(ω′js = xr) ∼ nγr

}
≈ n!

(nγ1)!(nγ2)! . . . (nγr)!
ρnγ1

1 ρnγ2

2 . . . ρnγr
r

Using Stirling’s formula log(n!) = n log(n)− n + O(log n), we have

1

n
log Pn(Ln ∈ B(γ, ε)) ≈ 1

n
log

(
n!

(nγ1)!(nγ2)! . . . (nγr)!

)
+

r∑
s=1

γs log ρs

= −
r∑

s=1

γs log γs + O

(
log n

n

)
+

r∑
s=1

γs log ρs

= −Iρ(γ) + O

(
log n

n

)

From the Sanov theorem and the fact that when γ 6= ρ then Iρ(γ) > 0, while
Iρ(ρ) = 0, we deduce that the weak limit of Ln is ρ as n → ∞. In the context of

4



statistical mechanics we call ρ the equilibrium value of Ln with respect to the measure
Pn. This limit is the simplest example of what is commonly called a maximum entropy
principle. We have thus proved the following:

Maximum entropy principle γ0 ∈ M1 is an equilibrium value of Ln with
respect to Pn if and only if γ0 minimize Iρ(γ) over M1. This occurs if and only if
γ0 = ρ.

Why is called “maximum entropy principle” if the equilibrium state is obtained by
a minimization (not a maximization!) procedure for the relative entropy? This is due
to a usual convention in the physics literature and it is explained as follow. If ρ is the
uniform measure on Γ, that is ρi = 1

r
∀i = 1, . . . , r then Iρ(γ) = log r +

∑r
i=1 γi log γi.

The quantity S(γ) = −
∑r

i=1 γi log γi is called the Shannon entropy of γ. Since
−γi log γi ≥ 0, S(γ) is non-negative. S(γ) is a measure of the randomness in γ.
S(γ) = log r − Iρ(γ) ≤ log r; S(γ) = log r iff Iρ(γ) = 0 and this hold if γ = ρ.
Hence S(γ) attains its maximum value of log r if γ equals the uniform measure ρ.
The measure ρ is in a sense the most random probability measure on M1. At the
other extreme S(γ) equals 0 if one of the ρ′is is 1 and the others are all 0. Then the
corresponding measures are the least random probability measure on M1.

4 Microcanonical and canonical ensemble

We now want to consider the equilibrium state for the discrete ideal gas model intro-
duced before, subject to relevant physical constraint. The macroscopic constraint we
want to impose is that the total energy per particle

Hn(ω)

n
=

1

n

n∑
i=1

Xi(ω)

is kept fixed. In this section we motivate a limit theorem for the empirical distribution
Ln conditioned to the total energy conservation. This limit theorem has the added
bonus of giving insight into a basic construction in statistical mechanics. As we will
see it motivates the form of the Gibbs canonical distribution for the discrete ideal gas
and, by extension, for any statistical mechanics model characterized by conservation
of energy.

In the absence of conditioning, the weak law of large numbers tell us that - as
n →∞ - the sample mean Hn(ω)/n should equal approximately the theoretical mean

E(X1) =
r∑

s=1

ρrxr

and Sanov theorem tell us that Ln → ρ. Let us now assume that Hn/n ∈ [z − a, z],
where a is a small positive number and x1 ≤ z − a < z < E(X1) (a similar result
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would hold if we assumed that Hn/n ∈ [z, z +a] where E(X1) < z < z +a < xr). The
question we are after is: determine the probability vector ρ∗ = (ρ∗1, . . . , ρ

∗
r) such that

ρ∗i = lim
n→∞

Pn{X1 = xi|Hn/n ∈ [z − a, z]}

In other words we want ρ∗ such that for any ε > 0

lim
n→∞

Pn(Ln ∈ B(ρ∗, ε)|Hn/n ∈ [z − a, z]) = 1

Define the closed convex set

Γ(z) =

{
γ ∈M1 :

r∑
i=1

xiγi ∈ [z − a, z]

}
Since for each ω ∈ Ωn

1

n
Hn(ω) =

r∑
i=1

xiLn,i(ω)

it follows that

{ω ∈ Ωn :
1

n
Hn(ω) ∈ [z − a, z]} = {ω ∈ Ωn : Ln(ω) ∈ Γ(z)}

Thus we want ρ∗ such that for any ε > 0

lim
n→∞

Pn(Ln ∈ B(ρ∗, ε)|Ln ∈ Γ(z)) = 1

It follows that for any γ not equal to ρ∗ and for any ε > 0 satisfying 0 < ε < ||ρ∗−γ||

lim
n→∞

Pn(Ln ∈ B(γ, ε)|Ln ∈ Γ(z)) = 0

The next theorem implies that the probability in the previous expression converges
to 0 exponentially fast and the exponential decay rate is again related to the relative
entropy (as in Sanov’s theorem)

Theorem 4.1.
Pn(Ln ∈ B(γ, ε)|Ln ∈ Γ(z)) ≈ exp[−nI(γ)] (4.2)

where the rate function I(γ) is given by

I(γ) =

{
Iρ(γ)− Iρ(ρ

(β)) if γ ∈ Γ(z)
∞ if γ ∈M1 \ Γ(z)

(4.3)

and the probability vector ρ(β) has the form

ρ
(β)
i =

e−βxiρi∑r
j=1 e−βxjρj

(4.4)

with β = β(z) the unique value of β satisfying

r∑
i=1

xiρ
(β)
i = z . (4.5)
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We will not prove this theorem. However we will motivate it with the maximum
entropy principle. In order to do this we will first prove the next proposition.

Proposition 4.6. Iρ(γ) attains its infimum over Γ(z) at the unique point ρ(β) defined
in the previous theorem.

Proof. We may write, for each i = 1, . . . , r

ρ
(β)
i

ρi

=
e−βxi∑r

j=1 e−βxjρj

=
e−βxi

eϕ(−β)

where we have defined, for t ∈ R, ϕ(t) = log(
∑r

i=1 etxiρi). Hence for any γ ∈ Γ(z)

Iρ(γ) =
r∑

i=1

γi log
γi

ρi

=
r∑

i=1

γi log
γi

ρ
(β)
i

+
r∑

i=1

γi log
ρ

(β)
i

ρi

= Iρ(β)(γ)− β

r∑
i=1

xiγi − ϕ(−β)

If γ = ρ(β) then, recalling Eq. (4.5) and the fact that Iρ(β)(ρ(β)) = 0, from the previous
equation we find

Iρ(ρ
(β)) = −βz − ϕ(−β)

Consider instead γ ∈ Γ(z) with γ 6= ρ(β). Since Iρ(β)(γ) ≥ 0 with equality if and only

if γ = ρ(β), we obtain

Iρ(γ) = Iρ(β)(γ)− β
r∑

i=1

xiγi − ϕ(−β)

> −β
r∑

i=1

xiγi − ϕ(−β)

≥ −βz − ϕ(−β) = Iρ(ρ
(β))

where in the last inequality we used the definition of Γ(z). We conclude that for any
γ ∈ Γ(z), Iρ(γ) ≥ Iρ(ρ

(β)) with equality if and only if γ = ρ(β). Thus Iρ(γ) attains its
infimum over Γ(z) at the unique point ρ(β).

Form the previous proposition, we see that theorem (4.1) is consistent with the
following version of the maximum entropy principle

Maximum entropy principle Conditioned on the event Sn/n ∈ [z − a, z], the
asymptotically most likely configuration of Ln is ρ(β), which is the unique γ ∈ M1

that minimize Iρ(γ) subject to the constraint that γ ∈ Γ(z). In statistical mechanics
terminology, ρ(β) is the equilibrium macrostate of Ln with respect to the conditional
measure Pn(·|Hn/n ∈ [z − a, z]).
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Let us rederive the expression (4.4) for the equilibrium state under the condition
of total energy in the case ρ is the uniform measure. Then we have that Iρ(γ) =
log r +

∑r
i=1 γi log γi = log r − S(γ). The maximum of the entropy S(γ) under the

constraint γ ∈ Γ(z) can be obtained by introducing Lagrange multipliers β and µ.
We consider the function

F (γ, λ, µ) = S(γ)− β

[
r∑

i=1

xiγi − z

]
− µ

[
r∑

i=1

γi − 1

]
The stationarity conditions read:

− log γi − 1− βxi − µ = 0∑
i γi = 1∑
i xiγi = z

From the first equation we deduce that γi = e−βxie−(1+µ). Imposing the two con-
straints we find

γi =
e−βxi∑
j e−βxj

where β is determined by
∑

i xiγi = z. We deduce that, in the case ρ is the uniform
measure, the maximum of the Shannon entropy S(γ) ( or equivalently the minimum
of the relative entropy Iρ(γ)) for γ ∈ Γ(z) is attained at γ = ρ(β).

4.1 Equivalence of ensembles

In the previous section we found that

lim
n→∞

Pn{X1 = xi|Hn/n ∈ [z − a, z]} = ρ
(β)
i

where

ρ
(β)
i =

e−βxiρi∑r
j=1 e−βxjρj

with β = β(z) the unique value of β satisfying
∑r

i=1 xiρ
(β)
i = z. The next natural

question is the following: conditioned on Hn/n ∈ [z − a, z], as n → ∞ what is the
limiting conditional distribution of the random variables X1, . . . , Xk which represent
the energy levels of the first k particles? Although X1, . . . , Xk are independent with
respect to the original product measure Pn, this independence is lost when Pn is re-
placed by the conditional distribution Pn{·|Sn/n ∈ [z−a, z]}. The answer (somewhat
surprising!) is that with respect to Pn{·|Sn/n ∈ [z − a, z]}, the limiting distribution
is the product measure on Ωk with one-dimensional marginal ρ(β). In other words, in
the limit n → ∞ the independence of X1, . . . , Xk is regained. This is expressed by
the following

Theorem 4.7. Given k ∈ N, (xi1 , . . . , xik) ∈ Ωk we have

lim
n→∞

Pn{X1 = xi1 , . . . , Xk = xik |Hn/n ∈ [z − a, z]} =
k∏

j=1

ρ
(β)
ij
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Proof. We give just the idea of the proof. We consider k = 2; arbitrary k ∈ N can be
handled similarly. For ω ∈ Ωn define the pair empirical measure

L2
n(ω) = {L2

n,i,j(ω) : i, j = 1, . . . r}

where

L2
n,i,j(ω) =

1

n

n∑
k=1

δXk(ω),Xk+1(ω)(xi, xj)

with periodic boundary conditions Xn+1(ω) = X1(ω). The empirical pair vector L2
n

counts the relative frequency with which the pair (xi, xj) appears in the configuration
ω. L2

n takes values in the set

M2 =

{
τ = (τi,j)i,j=1,...,r ∈ [0, 1]r

2

:
r∑

i,j=1

τi,j = 1

}

Suppose one can show that τ ∗ = (ρ
(β)
i ρ

(β)
j )i,j=1,...,r has the property that for every

ε > 0
lim

n→∞
Pn(L2

n ∈ B(τ ∗, ε)|Hn/n ∈ [z − a, z]) = 1 .

Then it follows that

lim
n→∞

Pn{X1 = xi, X2 = xj|Hn/n ∈ [z − a, z]} = ρ
(β)
i ρ

(β)
j .

Like the analogous limit for the empirical measure, the limit for the pair empirical
measure can be proved by showing that the sequence L2

n, n ∈ N satisfies a large
deviation principle on M2 and the rate function attains its infimum at the unique
point τ ∗. The details are omitted.

Let us summarize the discussion up to now. For the ideal gas model considered
above we have argued that the equilibrium macrostate conditioned on conservation
of total energy is given by

lim
n→∞

Pn{X1 = xi1 , . . . , Xk = xik |Hn/n ∈ [z − a, z]} =
k∏

j=1

ρ
(β)
ij

(4.8)

On the left side we have the microcanonical measure (fixed energy); on the right
hand side we have the canonical measure (only the average value of the total energy
is fixed through the parameter β, which will have the physical meaning of the inverse
temperature). Being the ideal gas a non interacting system, the quantity on the right
hand side defines a probability measure Pk,β on Ωk that equals the product measure
with one dimensional marginals ρ(β).

We now observe that Pk,β can be rewritten in terms of the total energy Hk(ω) =∑k
i=1 ωi as follows. For ω ∈ Ωk we have

Pk,β(ω) =
k∏

j=1

ρ(β)(ωj) =
k∏

j=1

e−βωjρ(ωj)∑
ωl∈Ω e−βωlρ(ωl)

=
e−βHk(ω)

Zk(β)
Pk(ω)
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where

Pk(ω) =
k∏

j=1

ρ(ωj)

and
Zk(β) =

∑
ω∈Ωk

e−βHk(ω)Pk(ω)

with β = β(z) the unique value of β satisfying
∑r

i=1 xiρ
(β)
i = z. Since

∑r
i=1 xiρ

(β)
i =∑

ω∈Ωk
[Hk(ω)/k]Pk,β(ω), the constraint on β = β(z) can be expressed as a constraint

on Pk,β. Namely, choose β so that
∑

ω∈Ωk
[Hk(ω)/k]Pk,β(ω) = z. The limit in Eq.(4.8)

express the equivalence of the microcanonical and canonical ensemble provided β is
chosen as above. Since the canonical ensemble has a much simpler form than the
microcanonical ensemble, one usually prefer to work with the former.

5 Gibbs states for models in statistical mechanics

The previous discussion motivates the definition of the Gibbs state for a wide class of
statistical mechanics models that are defined in terms of an arbitrary energy function,
the Hamiltonian H.

Let Hn : Ωn → R be the Hamiltonian function. Hn defines the microscopic
energy of a configuration ω ∈ Ωn. Let β be a parameter proportional to the inverse
temperature. Then the canonical ensemble, or Gibbs state, is the probability measure
that to each each ω ∈ Ωn assigns the weight

Pn,β(ω) =
e−βHn(ω)

Zn(β)
Pn(ω) (5.1)

where Pn is the apriori product measure on Ωn with one dimensional marginal ρ.
Zn(β) is the normalizing factor that makes Pn,β a probability measure. That is

Z(β) =
∑
ω∈Ωn

e−βHn(ω)Pn(ω) (5.2)

For future use we introduce the following quantities

1. Zn(β) is called the partition function

2. Fn(β) = − 1
β

ln Zn(β) is called the free energy function

3. Un(β) =
∑

ω∈Ωn
Hn(ω)Pn,β(ω) is called the internal energy

4. Sn(β) = −
∑

ω∈Ωn
Pn,β(ω) log Pn,β(ω) is called the thermodynamic entropy

Simple algebra shows that they are related by the following thermodynamic relation:

Fn(β) = Un(β)− Sn(β)

β
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Also, the internal energy and entropy can be derived from the free energy as follows:

∂

∂β
(βFn(β)) = Un(β)

β2 ∂

∂β
(Fn(β)) = Sn(β)

6 Gärtner-Ellis theorem

We finish this lecture by considering a powerful extension of large deviation property
to sequences of dependent random variables. This is due to Gärtner and Ellis, who
generalized Cramer’s theorem for the sum of i.i.d. random variables. This extension
will be relevant for future applications in statistical mechanics.

Let (Yn)n≥1 be a sequence of random variables which are defined on a probability
space (Rd,F , Pn). We define the cumulant generating functions

cn(t) =
1

n
log En(e<t,Yn>) n = 1, 2, . . . t ∈ Rd (6.1)

where En denotes expectation with respect to Pn and 〈·, ·〉 denotes the standard
Euclidean inner product on Rd.

Theorem 6.2. The following hypothesis are assumed to hold:

1. each function cn(t) is finite for all t ∈ Rd

2. the limit c(t) = limn→∞ cn(t) exists for all t ∈ Rd and is finite

We call c(t) the free energy function of (Yn)n≥1. Let Qn be the distribution of Yn/n
on Rd and define the Legendre transform

I(y) = sup
t∈Rd

{〈t, y〉 − c(t)} for y ∈ Rd (6.3)

Then the following holds:

(a) The upper large deviation bound is valid:

lim sup
n→∞

1

n
log Qn(C) ≤ − inf

y∈C
I(y) ∀C ⊆ Rdclosed (6.4)

(b) Assume in addition that c(t) is differentiable ∀t ∈ Rd. Then the lower bound
is valid:

lim inf
n→∞

1

n
log Qn(O) ≤ − inf

y∈O
I(y) ∀O ⊆ Rdopen (6.5)

Hence, if c(t) is differentiable for all t, then Qn satisfies a large deviation property
with rate n and rate function I(y).
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Remark 1 We may heuristically express the large deviation property by the
formal notation

Qn(Yn/n ∈ dy) ≈ e−nI(y)dy (6.6)

which is valid to exponential order for large n.

Remark 2 The proof of the theorem can be found in [Ellis, Chap. VII] or in [Den
Hollander, Chap. V] in a slightly different form. The theorem is proved by suitably
generalizing the proof of Cramér’s theorem. The assumption that c(t) is finite can be
relaxed to c(t) ∈ [−∞,∞].

Remark 3 Like the rate function of the Cramér’s theorem, the rate function I(y)
in Eq. (6.3) is a convex, lower semicountinuous functions and it has compact level
sets. The infimum of I(y) is 0 and the infimum is attained at some point. However,
in contrast to the rate function of the Cramér’s theorem, the minimum point need
not to be unique (see example below). Whether or not I(y) attains its infimum at a
unique point has interesting consequences which will be explored later in this course
(phase transitions).

Remark 3 One of the hypothesis of the theorem is the differentiability of the free
energy function c(t). An interesting problem is to investigate the existence of large
deviation principles when this condition is violated. Unfortunately the situation is
complicated and a general theory does not exists. In the example below, the free
energy function is not differentiable at a single point and the lower bound fails for
a whole class of open sets. Nevertheless, a large deviation property holds with a
non-convex rate function. Let Yn have distribution P(Yn = n) = P(Yn = −n) = 1/2.
Then

c(t) = lim
n→∞

1

n
log

(
1

2
(ent + e−nt)

)
= |t| .

Thus c(t) is not differentiable at t = 0 and the Gärtner-Ellis theorem is not applicable.
We also have from Eq.(6.3)

I(y) = sup
t∈R

{ty − |t|} =

{
0 if |y| ≤ 1
∞ if |y| > 1

I(y) attains its infimum not at a single point but in the whole interval [−1, 1]. On the
other hand it is easy to check that the distributions Qn of Yn/n have a large deviation
property with rate function

J(y) =

{
0 if |y| = 1
∞ if |y| 6= 1

The function I is the largest convex function less than or equal to the rate function
J .

7 Exercises

Exercise 1 Let (Xi)i≥1 be i.i.d. random variables taking value in R satisfying

ϕ(t) = E(etX1) < ∞ ∀t ∈ R
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Let Yn =
∑n

i=1 Xi. By applying Th. (6.2) show that Yn/n satisfies a LDP with rate
funtion

I(y) = sup
t∈R

{ty − log ϕ(t)}

Exercise 2 Let (Xi)i≥1 be a sequence of i.i.d. random variables taking values in
a finite set Ω = {x1, x2, . . . , xr} and having marginal law ρ = (ρ1, . . . , ρr). Deduce
Sanov’s theorem from the Gartner-Ellis theorem by considering Yn = nLn where Ln

denotes the empirical measure. Show that the the rate function is given by the relative
entropy.

Exercise 3 Show that the relative entropy Iρ(γ) measure the discrepancy between γ
and ρ, in the sense that Iρ(γ) ≥ 0 and Iρ(γ) = 0 if and only if γ = ρ. Thus Iρ(γ) ≥ 0
attaind its infimum of 0 over M at the unique measure γ = ρ. Show also that Iρ(γ)
is strictly convex.

(Hint: for x ≥ 0 the graph of the strictly convex function x log x has the tangent
line y = x− 1 at x = 1. Hence x log x ≥ x− 1 with equality if and only if x = 1.)

Exercise 4 Let Xi be a stationary Markov chain taking value in Ω and having tran-
sition matrix P . By applying the Gärtner-Ellis theorem show that the pair empirical
measure L2

n = 1
n

∑
i δXi,Xi+1

satisfy a large deviation principle with rate function

I(ν) =
∑
i,j

νi,j log

(
νi,j

ν̄iPi,j

)
where ν̄i =

∑
j νi,j.
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