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1 Ferromagnets on Z”: general results

In this lecture we will discuss phase transitions. One of the major success of equi-
librium statistical mechanics is its capability to explain the phenomenon of phase
transitions in terms of symmetry breaking. The simplest setting to introduce phase
transition is by considering ferromagnetic models on a lattice.

We start by defining the model. Let A C ZP” be a finite subset of the D dimensional
lattice. We will identify A with the hypercube {1,2,..., N}P. A site i € A will then
have coordinates i = (iy,4s,...,ip), where each ig € {1,...,N} ford = 1,...,D.
The total number of sites is |[A| = NP.

To each site there is assigned a dichotomic spin variable o; which takes the values 1
(spin-up) or —1 (spin down). The configuration space is the set 2, of all the sequences
o ={o;,i € A}. Thus Q) = {—1,1}* and the cardinality of the configuration space
is 2MA = 2N"

The spin random variables interact among themselves. The interaction is given
by the following Hamiltonian function H : Qy — R

1
HA(O’) = —5 Z Ji,jaiaj - hZUz (11)

i,jEA i€

We assume the coupling interaction J;; to be a non-negative (ferromagnetic), sym-
metric, translation invariant function on Z”, namely J;; = J(i — j) = J(j — i) > 0.
The factor 1/2 in the Hamiltonian is just a convention and is included because of the
double counting in the sum for ¢ # j, which is due to the symmetry of J; ;. Each J; ;
tunes the interaction between the spin i and j. An interaction is said to have finite
range if there exist R € N such that J(k) equals 0 for all k with ||k|| > R (R is called
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the range of the interaction). The main example we will consider is the Ising model.
In this case, for a given number J > 0 we define J(i — j) to be J if ||i — j|| = 1 and
zero otherwise. In other words this interaction couples only nearest neighbor sites and
it has range 1.

The external field h € R in the Hamiltonian (1.1) represents the strength of the
applied magnetic field. Note that the term i), o; breaks the symmetry ¢ — —o in
the Hamiltonian.

The apriori distribution of the spin is the uniform product measure on 2, that is
P(o) = ﬁ for all o € Q4. The thermodynamic property of the model will be deduced
by considering the thermodynamic limit of the finite volume Gibbs canonical measure

e_BHA(U)

PA,ﬁ,h(U) = WP(O’) (12)

where Z, (3, h) is the partition function

Za(B,h) =Y e MNOP(o)

IS YN

Most of the information about the system will be contained in the thermodynamic
limit of the free energy, whose definition we recall:

h) = 1i h 1.3
f(ﬁa ) A;I;Df‘/\(ﬁ’ ) ( )
where the finite volume free energy per particle is given by
1
=——IlogZ 1.4
fx(ﬁah) ’Awﬁ 0og A(ﬁvh) ( )

The thermodynamic behavior of the model will be a function of two control pa-
rameters, which have a direct physical meaning: the inverse temperature § = 1/T
and the external field h. A phase transition is characterized by an order parameter,
i.e. a number (or a function in more general cases) which change its value (or its
properties in more general cases) as one of the control parameter crosses a critical
value. In the case of our setting (ferromagnets) the appropriate order parameter is
the spontaneous magnetization, which we are going to define now.

Let wpgn(-) denote expectation w.r.t. the finite volume Gibbs state in formula
(1.2), i.e. for a generic bounded function g(o) : Qy — R,

waph(9(0)) = Z 9(0)Pasn(o)

AN

and let my (o) be the function which measures the sample magnetization per site in
the volume A



We define the specific magnetization m(3,h) as the thermodynamic limit of the ex-
pected value of the sample magnetization per site with respect to the Gibbs measure,
namely

h)= li h 1.5
m(B, h) i, ma(3,h) (1.5)
where
ma (B, h) = wapn(ma(o)) (1.6)
Notice that the following relations is an immediate consequence of Eq. (1.4) and
(1.6):
0 h
ma(8, ) = -0 (1)

Standard concavity arguments and the Lebesgue dominated convergence theorem can
be used to show that an analogous relation holds in the thermodynamic limit:

9f(8.h)

(s, ) =~ (L8)

The specific magnetization m(f3, h) has the following behavior as the values of the
field and temperature are varied. Observe that by the symmetry ¢ — —o it follows
that ma(3,0) = 0 and thus m(3,0) = 0, while for ~ > 0 (respectively h < 0) we have
m(B,h) > 0 (respectively m(3,h) < 0). However there exist a critical value of the
0, called the critical inverse temperature and denoted by ., which has the following
properties:

o if § < f3, then limy,_,o+ m(5, h) = limy_o- m(5,h) =0
e if 3> (. then lim;, o+ m(83,h) = m* > 0 and limy, o- m(3,h) = —m* <0

We call m* the spontaneous magnetization. It follows from above that in ferromagnets
the spontaneous magnetization is the order parameter. Indeed, as a function of the
temperature, it is zero above the critical temperature 1/, and is different from zero
below the critical temperature, reaching the value 1 as T" — 0.

Besides the order parameter, also correlations in the Ising model are related to
the phase transition. This can be understood from the following heuristic discussion.
Fix h = 0. At infinite temperature 5 = 0, the Gibb state is the uniform product
state, with respect to wich the spin are independent and thus uncorrelated. At small
but non zero [, spin begin to be positively correlated with their neighbours because
of the attractive interaction in the Hamiltonian. Since wgo(c;) = 0 for each i, the
covariance between spin will coincide with wgo(0;0;). The correlations turns out to
have an exponential decay when the Euclidean distance is large

. =gl o
wo(0305) ~ exp as ||i — jl| — oo

£(5,0)

This relation defines the correlation length £(3,0), which is a rough measure of the
distance over which correlations between spins are significant. As 3 increase, (/3,0)
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increase, and correlations begin to extend over larger and larger distances. These
correlations take the forms of spin fluctuations, which are islands of a few spin each
that mostly point in the same direction. When 3 = [. the correlation length is
infinite, and this reflected in the fact that wg, o(0;0;) decays as a power law:

wae0(0i0y) ~ [li = |17 as i = j|| — oo

where z is some positive number (z = 1/4 for the Ising model in D = 2). The infinite
correlation length at G = [, is related to the behavior of the magnetic susceptibility
X(3,0) at zero field, where

om(3, h)

X(B.h) =

(1.9)

On a finite size system we have

Xa(53,0) = M Z wap0(0:05) = B wap0(000)

1,JEA JEA

where in the last equality we used translational invariance. Going to the infinite
volume limit, we see that for 0 < § < f3., correlations decays exponentially and the
susceptibility is finite. By contrast, at § = (3. correlations decays as power law and
the susceptibility is infinite. From the definition of the susceptibility we also see that
it is related to the second derivative of the free energy function. This is why the
phase transition in ferromagnets is called a second order phase transition. According
to a general classification scheme introduced by Erenfhest, a divergence in the k'
derivative of the free energy with respect to the one of the control parameters signals
a transition of the k%" order.

In the Ising model the value of the critical inverse temperature (3. depends on
the coupling constant J and - more importantly - on the dimension D of the lattice.
We will prove that if D = 1 then # = oo and thus spontaneous magnetization does
not occur at any finite temperature. By contrast, for any D > 2, . is finite. For
the Ising model on Z? with zero external fields, Onsanger found the exact value of
the free energy in 1944. This calculation, one of the most famous in mathematical
physics and for which he won the Nobel prize, involved the transfer matrix formalism
(a simple application of this will be given in D = 1). Five years later, he announced
without proof the exact value of (5. and the spontaneous magnetization, which are
given by

sinh26.J =1

= [1 —sinh(28.J) /8

and were later confirmed to be correct. There is not yet an exact for the Ising model
in D = 3. However the existence of non zero spontaneous magnetization and the
occurrence of a phase transition is established via Peierls argument (see Ellis book,
Ch V.5).



2 Curie-Weiss model

The so called mean-field theory of ferromagnets is an exactly solvable model which is
a prototype to show the existence of a phase transition. The analysis of the model,
which is called the Curie-Weiss model, involves an interesting application of large
deviation theory. The model is obtained by considering an interaction between all
possible couples of N € N spins. Since spatial distance does not play a role anymore,
we can completely forget the geometry of the underling lattice. The subset A can be
simply taken to be the set of point A = {1,2,..., N} and its cardinality will then be
|A] = N. The sample space Qy = {—1,+1}" will have cardinality |Qy| = 2. In
order for the Hamiltonian function to be extensive in the volume we put J; ; = 1/N
for all couples (i,7) € A x A. The Hamiltonian the reads:

N N
1
HN(U)Z_WZOin_hZJi (21)
i=1

3,j=1

What makes easily solvable the model is the fact that the Hamiltonian can be imme-
diately rewritten in terms of the sample magnetization

my(o) = %Zai (2.2)

Indeed we have N
Hy(o) = —5mN(0)2 — Nhmpy(o) (2.3)

We will be interested in studying the thermodynamic limit of the free energy. To
lighten the notation we also define the finite volume pressure

1
py(8.h) = Slog Z(B,h) =log } | e 7 — Nlog2 (24)
UGQN

The pressure is related to the free energy by the formula

—Bfn(B,h) = pn (B, h)

2.1 Thermodynamic limit

The first problem is to show the existence of the thermodynamic limit of the free
energy (or equivalently of the pressure). To this aim we introduce an interpolation
method, which is a standard tool in statistical mechanics.

Consider the splitting of a system of size N in two smaller subsystems having N,
and N, sites,respectively, with N = N; + Ny. For the extensive pressure Py (3, h) =
Npn(6,h), we then have the following proposition

Proposition 2.5. The extensive pressure of the Curie-Weiss model is a subadditive
sequence in N, that is

PN(ﬁah>gPN1(ﬁ7h)+PN2(67h) (26)



Proof. The proof is very simple. For a given spin configuration o = (o1,...,0x)
let us denote in the most natural way by ¢’ = (o1,...,0x;,) the spin variable for the
subsystem of size Ny and by 0” = (0,41, - -.,0n) the Ny spin variables for the second
subsystem. Obviously we have o = ¢’ U ¢”.

For a parameter t € [0, 1] consider the following interpolating Hamiltonian
Hy Ny wo (0, 1) = tHy (o) + (1 = t)[Hy, (o) + Hy, (0")] (2.7)

and the interpolating pressure:

Pyn(f3, h,t) = log ( > e—ﬁH@”t)) (2.8)

O'GQN

The following boundary conditions holds:

Py(f,h,1) = log ( > e_ﬁHN(")> = P (B, h) (2.9)

gEQN

Pyn(B,h,0) = log ( > e—ﬁ[HN1(0’>+HN2(o”>]>

gEQN
= log Z e PHN, (@) Z e PHN,(0")
U’GQNI U//EQNQ
= PNl(ﬁvh)+PNQ(ﬁvh) (210)
The interpolating pressure is monotone in ¢. To show this compute the ¢ derivative
d
N8 ht) = —Buwnpne (Hy(o) — Hy, (o) = Hiy(0")) (2.11)

where wy g5.(-) denotes expectation with respect to the ¢ deformed state:

e PHN Ny Ny (0t)

wngnt(g) = g9(o) P(o)
Pt UGZQN ZN Ny Ny (B, Ry t)
Observe that
N N N
Hylo) — Hy,(¢) — Hyl") = —5 (mylo) = w017 = R, ("7?)

where the sample magnetization for the two subsystem are defined by adapting the
definition (2.2):

m (o) = 3 Do (2.12)



mNQ(a"):Ni 3 o (2.13)

We then have, combining (2.2),(2.12) and (2.13)

miv(o) ~ Yo, (o) ~ %m]\b(a“) — 0 (2.14)

2

and, since the mapping m — m? is convex, we have also the general bound, holding

for all spin configuration o
2 N 1 N. 2

my(o)® — Wle(a')Q — WmNQ(J”)2 <0 (2.15)

Putting together (2.11) (2.14) and (2.15), we find that
Hy(o) — Hn,(0') — Hy,(0") 2 0

which implies that

d
—P h,t) <0
dt N(ﬁ? ; )_

since wy grt(g) > 0if ¢ > 0. The subadditivity property (2.6) follows then from a
straightforward integration of previous expression and application of the fundamental
theorem of calculus. O

The following theorem is then an immediate consequence of the previous propo-
sition

Theorem 2.16. The thermodynamic limit of the pressure (and thus of the free energy)
per particle exists and is finite for all 3 and h.

Proof. Since Py(f3, h) is a subadditive sequence then the limit limy_,« Py gvﬁ’h) exists.

To show that it is finite it is enough to prove that the sequence py (53, h) is bounded
from below. This follows from because

ilog( > AN CRE Fhm )y >

1
¥ log VM = 5(2 + |h])

1
N

O'EQN

2.2 Large deviation solution

The explicit computation of the value of pressure in the thermodynamic limit is a
nice application of large deviation theory. Let n(dz) denote the distribution of the
sum

1 X
my(o) = N Zai
i=1
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with respect to the product measure P(c). Then the partition function cab be written
as

Zx(s.) = [ e [N(éﬁ n ﬁhZ)} Qn(d)

By Cramer’s theorem, the distributions {Qy; N = 1,2,...} have a large deviation
property with rate N and rate function

I(z) = ilelﬂlg{tz —log(E(e™1))} = Stlel]ll{?{tz — log(cosh t)}

A simple computation shows that

I(2) = 2 log(l — 2) + 2 log(1 + 2) forfz] <1
00 for|z] > 1

From Varadhan lemma it follows that

A}iiréo%log/Rexp {N(gzz + th)} Qn(dz) = sup {gzz + Bhz — [(z)}

z€[—1,1]

Maximum points of

_B
2

g(2) 22+ Bhz — I(2)

satisfies the equation g—g =0, that is
z =tgh(B(z+ h))

The solutions z(f3, h) of the previous equation can be studied graphically. The nature
of the solutions depends on whether 3 <1 or § > 1.

e for § < 1 and any real h there is a unique solution z(3,h). As h — 0 this
solution tends to O.

e for § > 1 and any real h # 0 there is a unique solution z(3, h) that has the
same sign as h; for § > 1 and h = 0 there are two non zero solutions z (/)
and z_(3) = —zy(f). As h — 07, z(6,h) — 2:(8) > 0 and as h — 07,
2(B,h) = z-(8) <0

One can immediately checked that the magnetization m(3,h) for the Curie-Weiss
model equals z(3,h) for > 0,h # 0 and for § < 1,h = 0. However the following
holds for each choice of sign

. 2(4,0) =0 forg <1
hlggli m(B,h) = { 2z () #0  forg > 1

Thus there exist a phase transition in the Curie-Weiss model which is associated to
a spontaneous magnetization. One can also study the susceptibility and find that

)
X0 h) = T a3, hy)

Notice that this becomes infinite at the critical point h = 0, 5 = 1 since m(1,0) = 0.
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3 Ising model on Z

In this last section we solve the Ising model in one dimension. As already antici-
pated we will find that no phase transition occurs at any positive temperature. The
Hamiltonian is given by

N N
O') = _ngiai+1 - hZUz (31)
i=1 i=1

We impose periodic boundary condition (this is not a restriction since the thermody-
namic limit of the free energy is not sensitive to the kind of boundary conditions)

ON+1 = 01 (32)
making the topology of a chain that of a circle. The partition function
_ —BH (U)L 3.3
o Z € N (3:3)
cEQN

can be expressed in terms of the product of a transfer matriz. Let us write

=Y Y exp(s Zjaiai+1+%h(ai+ai+1)])2i]v (3.4)

o1==+1 on==%1
which is equivalent to (3.3) by virtue of (3.2). Let a 2 x 2 matrix B(o;,0;41) be
defined for (0;,041) € {—1,+1}* by the function
1
B(o,0i41) = 5 exp|BJoioi1 + Bh(o; + 0i41)]

With this definition we may rewrite (3.4) in the form

Zn(B,h) = Z Z (01,09)B(02,03) ... B(on,0n+1)

o1=+1 on==%1

= Z BY(o1,01)

o1==+1
= Trace(BY) =AY + Y (3.5)

where Ay and A_ are the two eigenvalue of B, with Ay > A_. By an easy calculation
we find that the two eigenvalues are

1
Ay = §€ﬁ‘] {COSh(ﬁh) + \/sinhQ(ﬁh) + e—487
Thus Ay > A_ for all h and as N — oo only the larger eigenvalue is relevant becuase

1 1 A
—log Zn(B3,h) = log Ay + — log(1 + (55)) — log A as N — oo
N N N



Thus the thermodynamic limit of the pressure is given by

p(B,h) = —log2+ 3J + log [cosh(ﬁh) + \/sinhQ(ﬁh) + e—487 (3.6)

From this we deduce that the magnetization is
sinh(5h)
\/sinhQ(ﬁh) + e—487

m(f,h) =

For all 0 < 8 < oo we see that the spontaneous magnetization limy,_o. m(3,h) = 0,
thus implying the absence of a phase transition.
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