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1 Definition of the model

The mean-field theory of spin-glasses is a solvable model which shows the existence of
a new kind of phase transition. The reference model is the Sherrington-Kirkpatrick
model, introduced in 1975. After some false starts, a meaningfull solution was pro-
posed by G. Parisi in the eighties using a very clever ansatz for the symmetry breaking.
The results was obtained by using the non-rigorous method of replicas, which we are
going to review later. In 2005 the joint effort of F. Guerra and M. Talagrand allowed
to establish the correctness of Parisi result as a theorem. While this has been an
impressive achievement (it took 30 years!), it must also be noted that some relevant
properties of the quenched equilibrium state, like ultrametricity, are still the subject
of intensive investigations.

Similarly to the Curie-Weiss model, the Sherrington-Kirkpatrick model is obtained
by considering an interaction between all possible couples of N ∈ N spins. With ref-
erence to the setting of the previous lecture, we define the volume Λ = {1, 2, . . . , N},
with cardinality |Λ| = N and the sample space ΩN = {−1, +1}N with cardinality
|ΩN | = 2N . Let {Jij}i,j∈Λ×Λ be a family of i.i.d. random variables. While the model
can be defined for an arbitrary choice of the distribution of the random variable we
will stick to the choice of a standard normal distribution, that is for any (i, j) ∈ Λ×Λ
the Jij are i.i.d. Gaussian random variable with

E(Jij) = 0 E(J2
ij) = 1 (1.1)

The Hamiltonian then reads:

HN(σ) = − 1√
2N

N∑
i,j=1

Jijσiσj (1.2)
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Note that the normalization 1/
√

N has been added in such a way that the thermo-
dynamic quantities (free energy, internal energy, ..) are extensive, i.e. order N .

Contrary to the Curie-Weiss model, where the Hamiltonian is a function that asso-
ciates a real number to each configuration σ ∈ ΩN , now the Hamiltonian is a random
variable which for each σ ∈ ΩN takes real values with an assigned probability. Be-
ing the Hamiltonian a linear combination of independent Gaussian random variables,
it is also a gaussian random variable itself. However it will have correlations. The
covariance structure is immediately calculated as

E(HN(σ)HN(τ)) =
N

2
q2
N(σ, τ) (1.3)

where we have defined the site overlap between two spin configuration σ and τ as

qN(σ, τ) =
1

N

N∑
i=1

σiτi (1.4)

The family {HN(σ)}σ∈ΩN
is thus a centered Gaussian family with covariance matrix

C = CN(σ, τ) specified by eq. (1.3) and (1.4).

As usual, the main thermodynamic quantity of interest will be the pressure per
particle. Due to the randomness of HN(σ), we will have a random finite volume
pressure

pN(β, h, J) =
1

N
log

(∑
σ∈ΩN

e−β[HN (σ)−h
∑N

i=1 σi]

)
(1.5)

The finite volume quenched pressure is defined as

pN(β, h) = E(pN(β, h, J))

and the limiting quenched pressure will be

p(β, h) = lim
N→∞

pN(β, h)

These definitions rase immediately some questions:

• does the limit p(β, h) exists?

• what is the typical value of the random pressure pN(β, h, J) for large N?

We will answer this question in section 2 and 3, respectively.

1.1 Gaussian processes

We recall that the vector X = (X1, X2, . . . , Xn) has a centered gaussian distribution
if its joint probability density function is given by

fX(x) =
1√

(2π)n det(C)
exp[−1

2

n∑
i,j=1

C−1
i,j xixj] (1.6)
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where C is a positive definite symmetric matrix, which has the meaning of covariance
matrix, i.e. Ci,j = E(XiXj).

The following result, known as integration by parts formula or generalized Wick
law, will be very useful.

Lemma 1.7. For any differentiable function g : Rn → R with at most polynomial
growth and for any i = 1, . . . n we have

E(Xig(X)) =
n∑

j=1

Ci,jE
(

∂

∂Xi

g(X)

)
(1.8)

2 Thermodynamic limit of the pressure

In analogy with the case of the Curie-Weiss model the existence of the infinite volume
quenched pressure can be proved using a superadditive argument. The idea for the
proof of superadditivity is based again on interpolation. However a rigorous proof
was obtained only quite recently by F. Guerra and F.L.Toninelli. It turns out that
the convenient setting is the one of comparison of Gaussian processes. The necessary
tool is provided by the following result, due to Slepian and Kahane.

Lemma 2.1. Let X and Y be two independent n-dimensional Gaussian vectors with
covariances CX and CY respectively. Assume that

CX
i,j ≤ CY

i,j if i 6= j

CX
i,i = CY

i,i (2.2)

Let F : Rn → R be a function such that its second derivatives satisfy

∂2F

∂xi∂xj

(x) ≤ 0 if i 6= j (2.3)

Then
E(F (X)) ≥ E(F (Y )) (2.4)

Proof. For an interpolating parameter t ∈ [0, 1] consider the new Gaussian random
vectors V (t) and W (t) defined by

V (t) =
√

tX +
√

1− tY (2.5)

W (t) =
∂

∂t
V (t) =

1

2
√

t
X − 1

2
√

1− t
Y (2.6)

Define the function
ϕ(t) = E[F (V (t))] (2.7)

and observe that it satisfies the following boundary conditions:

ϕ(1) = E(F (X)) (2.8)
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ϕ(0) = E(F (Y )) (2.9)

The function ϕ(t) is non-decreasing. Indeed computing its derivative we find

∂

∂t
ϕ(t) = E

(
n∑

i=1

∂

∂Vi(t)
F (V (t)) · ∂

∂t
Vi(t)

)

= E

(
n∑

i=1

∂

∂Vi(t)
F (V (t)) ·Wi(t)

)
Then, using Wick’s rule, we have

∂

∂t
ϕ(t) = E

(
n∑

i,j=1

∂2

∂Vj(t)∂Vi(t)
F (V (t)) · E[Wi(t)Vj(t)]

)

From eq. (2.5) and (2.6) we deduce

E[Wi(t)Vj(t)] =
1

2
(CX

ij − CY
ij )

From the hypothesis (2.2) and (2.3) we then deduce that

∂

∂t
ϕ(t) ≥ 0

which, by the fundamental theorem of calculus, gives

ϕ(1) = E(F (X)) ≥ ϕ(0) = E(F (Y ))

Using the previous lemma one can establish the following theorem.

Theorem 2.10. The thermodynamic limit of the pressure

p(β, h) = lim
N→∞

pN(β, h)

exists and is finite for all β and h.

Proof. The idea is to show that the sequence PN(β, h) = NpN(β, h) is a superadditive

sequence; this immediately entails that the limit limN→∞
PN (β,h)

N
exists. To prove

superadditivity means that we must show that for any N1, N2, N ∈ N with N1 +N2 =
N

NpN(β, h) ≥ N1pN1(β, h) + N2pN2(β, h) (2.11)

In order to see this we consider the function F : R2N → R which, for a 2N -dimensional
vector x = {x(σ)}σ∈ΩN

, is defined as

F (x) = log

(∑
σ∈ΩN

exp[−βx(σ)] exp[βh

N∑
i=1

σi]

)
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It is easily checked that the off-diagonal components of the second derivative matrix
are all non positive, i.e.

∂2F

∂x(σ)∂x(τ)
(x) ≤ 0 if σ 6= τ

We now consider a splitting of an SK-system of size N into two subsystem of sizes
N1, N2 with N1 + N2 = N . For a given spin configuration σ = (σ1, . . . , σN) let
us denote in the most natural way by σ′ = (σ1, . . . , σN1) the spin variable for the
subsystem of size N1 and by σ′′ = (σN1+1, . . . , σN) the N2 spin variables for the
second subsystem. Obviously we have σ = σ′∪σ′′. Define the two gaussian processes

X(σ) = HN(σ)

Y (σ) = HN1(σ
′) + HN2(σ

′′)

where HN(σ), HN1(σ
′) and HN2(σ

′′) are three independent Gaussian processes with
covariances respectively

CN(σ, τ) =
N

2
q2
N(σ, τ)

CN1(σ
′, τ ′) =

N1

2
q2
N1

(σ′, τ ′)

CN2(σ
′′, τ ′′) =

N2

2
q2
N2

(σ′′, τ ′′)

where

qN(σ, τ) =
1

N

N∑
i=1

σiτi

qN1(σ
′, τ ′) =

1

N1

N1∑
i=1

σiτi

qN2(σ
′′, τ ′′) =

1

N2

N∑
i=N1+1

σiτi

It is immediate to check that

CX
σ,τ ≤ CY

σ,τ if σ 6= τ

CX
σ,σ = CY

σ,σ (2.12)

since, by convexity,

qN(σ, τ)2 ≤ N1

N
qN1(σ

′, τ ′)2 +
N2

N
qN2(σ

′′, τ ′′)2 (2.13)

With these definitions, the superadditivity condition (2.11) is equivalent to show that

E(F (X)) ≥ E(F (Y ))
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But this relation is immediately verified by applying the previous theorem, since all
hypothesis are verified. This complete the proof of superadditivity. To show that
the limit pressure p(β, h) is finite it is enough to prove that the sequence pN(β, h) is
bounded from above. This follows from an application of Jensen’s inequality, which
gives

1

N
E

(
log

∑
σ∈ΩN

eβHN (σ)+βh
∑N

i=1 σi

)
≤ β2

4
+ log(2 cosh(βh))

3 Self-averaging of the pressure

The next problem we are going to tackle is to establish that the random pressure coin-
cides with the quenched pressure almost surely in the thermodynamic limit. This will
be a consequence of the following concentration of measures result by M. Talagrand.

Theorem 3.1. For a given M ∈ N consider a Lipschitz function F : RM → R of
Lipschitz constant A, that is

|F (x)− F (y)| ≤ A||x− y|| (3.2)

where || · || denotes the Euclidean norm. If {X1
i }i=1,...,M is a family of i.i.d. standard

gaussian random variables, then the following holds for any t > 0

P
(
|F (X1)− E(F (X1))| ≥ t

)
≤ 2 exp

(
− t2

4A2

)
(3.3)

Proof. The proof is again a consequence of interpolation. We first observe that if we
are able to prove that

E{exp(s[F (X1)− E(F (X1))])} ≤ exp(s2A2) (3.4)

then (3.3) follows. Indeed we have:

P
(
|F (X1)− E(F (X1))| ≥ t

)
= P

(
F (X1)− E(F (X1)) ≥ t

)
+P
(
F (X1)− E(F (X1)) ≤ −t

)
Considering the first probability on the right hand side of the previous equation. We
have, by Markov inequality,

P
(
F (X1)− E(F (X1)) ≥ t

)
= P

(
exp(s[F (X1)− E(F (X1))]) ≥ exp(st)

)
≤ E{exp(s[F (X1)− E(F (X1))])}

exp(st)

≤ exp(s2A2 − st) (3.5)

where in the last line we used (3.4). Optimizing in s, we obtain the optimal value
s = t/2A2 and this gives

P
(
F (X1)− E(F (X1)) ≥ t

)
= exp

(
− t2

4A2

)
(3.6)
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One can repeat the same computation as in (3.5) for F replaced by −F , which has
the same Lipschitz constant. This gives the bound

P
(
F (X1)− E(F (X1)) ≤ −t

)
= exp

(
− t2

4A2

)
(3.7)

Adding up together (3.6) and (3.7), we obtain (3.3).

Thus to prove the theorem it suffices to prove eq. (3.4). To achieve this we
introduce two 2M -dimensional Guassian families X and Y as follows:

X = (X1, X2) (3.8)

Y = (Y 1, Y 1) (3.9)

where {X1
i }, {X2

i }, {Y 1
i } for i = 1, . . . M are i.i.d. standard Gaussian random vari-

ables. For an arbitrary 2M -dimensional vector Z = (Z1, Z2), we then consider the
function G : R2M → R+ defined by

G(Z) = G(Z1, Z2) = exp(s[F (Z1)− F (Z2)]) (3.10)

For an interpolating parameter t ∈ [0, 1] consider the new 2M -dimensional Gaussian
random vectors V (t) and W (t) defined by

V (t) =
√

tX +
√

1− tY (3.11)

W (t) =
∂

∂t
V (t) =

1

2
√

t
X − 1

2
√

1− t
Y (3.12)

More explicitly:

V (t) = (V 1(t), V 2(t)) =
(√

tX1 +
√

1− tY 1,
√

tX2 +
√

1− tY 1
)

(3.13)

W (t) = (W 1(t), W 2(t)) =

(
1

2
√

t
X1 − 1

2
√

1− t
Y 1,

1

2
√

t
X2 − 1

2
√

1− t
Y 1

)
(3.14)

Consider then the function
ϕ(t) = E[G(V (t))]

which satisfies the following boundary conditions:

ϕ(1) = E(G(X1, X2))

ϕ(0) = E(G(Y 1, Y 1)) = 1 (3.15)

The derivative of the function ϕ(t) with respect to t reads

∂

∂t
ϕ(t) = E

(
2M∑
i=1

∂

∂Vi(t)
G(V (t)) · ∂

∂t
Vi(t)

)

= E

(
2M∑
i=1

∂

∂Vi(t)
G(V (t)) ·Wi(t)

)
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Then, using Wick’s rule, we have

∂

∂t
ϕ(t) = E

(
2M∑

i,j=1

∂2

∂Vj(t)∂Vi(t)
G(V (t)) · E[Wi(t)Vj(t)]

)

From eq. (3.13) and (3.14) we deduce

E[Wi(t)Vj(t)] = −1

2
(δi,j−M − δi+M,j)

so that we arrive at

∂

∂t
ϕ(t) = −E

(
M∑
i=1

∂2

∂Vi(t)∂Vi+M(t)
G(V (t))

)
(3.16)

By an explicit computation

∂2

∂Vi(t)∂Vi+M(t)
G(V (t)) = −s2G(V (t))

∂

∂Vi(t)
F (V 1(t)) · ∂

∂Vi+M(t)
F (V 2(t))

We now remind a very remarkable property of Lipschitz function:

||∇F (x)||2 ≤ A2 (3.17)

Indeed we can write

A||x− y|| ≥ |F (x)− F (y)| = |〈∇F (x), y − x〉|+ o(||y − x||2)

which implies
A||x− y|| ≥ ||∇F (x)|| · ||y − x||+ o(||y − x||2)

Choosing y− x = λ∇F (x), for a constant λ, this implies (3.17). The property (3.17)
can be used, together with Cauchy-Schwartz inequality, in eq. (3.16), which then
gives

∂

∂t
ϕ(t) ≤ s2A2ϕ(t)

Integrating the previous differential inequality in the interval [0, 1] we find

ϕ(1) ≤ ϕ(0)es2A2

Remembering the boundary conditions (3.15) this means that

E
(
exp(s[F (X1)− F (X2)])

)
≤ es2A2

Using Jensen’s inequality with respect to the random vector X2, which is independnet
of X1, one obtains

E
(
exp(s[F (X1)− E(F (X2))])

)
≤ es2A2

But of course E(F (X2)) = E(F (X1)). So this proves inequality (3.4).
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Having established the previous theorem, the following result gives the almost
sure convergence of the random pressure to the quenched pressure.

Theorem 3.18. For any β and h, and any t ≥ 0,

P (|pN(β, h, J)− pN(β, h)| ≥ t) ≤ 2 exp

(
−Nt2

2β2

)
(3.19)

In particular this implies

E
(
[pN(β, h, J)− pN(β, h)]2

)
≤ 4β2

N
(3.20)

Proof. Consider the pressure pN(β, h, J) as a function of the N2 i.i.d. standard Gaus-
sian random variable J = {Ji,j}i,j=1,...,N . This function is Lipschitz. Indeed, consid-
ering two independent N2-dimensional i.i.d. standard Gaussian families J and J ′, we
may write

pN(β, h, J)− pN(β, h, J ′) =

∫ 1

0

d

dt
pN(β, h, tJ + (1− t)J ′)dt

On the other hand

d

dt
pN(β, h, tJ + (1− t)J ′) =

1

N

β√
2N

N∑
i,j=1

ωt(σiσj)(Jij − J ′ij)

Using the fact that |σiσj| ≤ 1 and Cauchy-Schwarz inequality we find that

|pN(β, h, J)− pN(β, h, J ′)| ≤ β√
2N

||J − J ′||

which proves that the function pN(β, h, J) is Lipschitz, with Lipschitz constant β√
2N

.

The claim (3.19) follows from the previous theorem. The second claim (3.20) is then
immediately proved using the identity

E
(
[pN(β, h, J)− pN(β, h)]2

)
= 2

∫ ∞

0

tP (|pN(β, h, J)− pN(β, h)| ≥ t) dt
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