20 March 2008

Toegepaste kansrekening 2WS15 problem set 3

• Read Lecture 1 (download at http://www.win.tue.nl/ cgiardin).

Let $(X_i)_{i\geq 1} \in \Omega = \{x_1, x_2, \ldots, x_r\}$ be sequence of discrete i.i.d. random variables with law $\rho = (\rho_1, \ldots, \rho_r)$. Let $\mathcal{M}_1 = \{\nu = (\nu_1, \ldots, \nu_r) : 0 \leq \nu_i \leq 1, \sum_{i=1}^r \nu_i = 1\}$ be the set of probability measures on Ω .

• Problem 1. Consider the relative entropy

$$I_{\rho}(\nu) = \sum_{i=1}^{r} \nu_i \log\left(\frac{\nu_i}{\rho_i}\right)$$

Show that

i) I_ρ(ν) is finite, continuous and strictly convex on M₁.
ii) I_ρ(ν) ≥ 0 with equality if and only if ν = ρ.

• Problem 2. Consider the entropy

$$I(\nu) = -\sum_{i=1}^{r} \nu_i \log \nu_i$$

i) Show that $I(\nu)$ attains its maximum on \mathcal{M}_1 at ν^* , the uniform measure on Ω . What is the value of $I(\nu^*)$?

ii) Which measures ν do have $I(\nu) = 0$?

• Problem 3. Let $\Gamma(z) = \{\nu \in \mathcal{M}_1 : \sum_{i=1}^r x_i \nu_i = z\}$. Show that $I(\nu)$ attains its maximum over $\Gamma(z)$ at $\bar{\nu}$ given by

$$\bar{\nu_i} = \frac{\exp\{-\beta x_i\}}{\sum_{j=1}^r \exp\{-\beta x_j\}}$$

where β is determined by $\sum_{i=1}^{r} x_i \bar{\nu}_i = z$.

Problem 4. Using the definitions of free energy F(β), internal energy U(β), thermodynamic entropy S(β) which are given in Lecture 1 show that:
i) F(β) = U(β) - ¹/_βS(β)
...) U(β) = ³/_β (βF(β))

ii)
$$U(\beta) = \frac{\partial}{\partial\beta}(\beta F(\beta))$$

 $iii)S(\beta) = \beta^2 \frac{\partial}{\partial\beta}(F(\beta)).$

• Problem 5. Compute the free energy and the internal energy for the perfect gas with Hamiltonian $H_n(p) = \sum_{i=1}^n \frac{p_i^2}{2}$, where $p_i \in \mathbb{R}$ represents particles velocity.

Hints and answers

- Problem 1.
 - i) Consider the convex function $x \mapsto h(x) = x \log x$
 - ii) Use Jensen inequality: if h(x) is a convex function then $\mathbb{E}(h(X)) \ge h(\mathbb{E}(X))$
- Problem 2.

i) Write $\sum_{i=1}^{r} \nu_i \log \nu_i = n \sum_{i=1}^{r} \frac{1}{n} \nu_i \log \nu_i$ and use again convexity of $x \mapsto h(x) = x \log x$. Alternatively solve the maximization problem by introducing a Lagrange multiplier to fix the constraint $\sum_{i=1}^{r} \nu_i = 1$. The result is $I(\nu^*) = \log r$.

ii) These are the r "non-random" measures of the form $\nu = (0, \ldots, 0, 1, 0, \ldots, 0)$.

• Problem 3.

Solve the maximization problem by introducing two Lagrange multiplier to fix the constraints $\sum_{i=1}^{r} \nu_i = 1$ and $\sum_{i=1}^{r} x_i \nu_i = z$.

• Problem 5.

Gaussian integration immediately gives $F(\beta) = -\frac{N}{2\beta} \log\left(\frac{2\pi}{\beta}\right)$ and $U(\beta) = \frac{N}{2\beta}$.