$27 \ \mathrm{March} \ 2008$

Toegepaste kansrekening 2WS15 problem set 4

• Problem 1.

Assume that the law of X_n satisfies the LDP with rate n and rate function

$$I(x) = \begin{cases} ex^{ex} - 1 & \text{, for } x > 0\\ e - 1 & \text{, for } x = 0\\ \infty & \text{, for } x < 0 \end{cases}$$

Show that there is a number μ such that X_n converges to μ in probability. i.e., $\lim_{n\to\infty} \mathbb{P}(|X_n - \mu| < \epsilon) = 1$ for all $\epsilon > 0$. Also, determine μ .

• Problem 2.

Do exercise III.9 from the book.

• Problem 3.

Assume that $\{X_i : i \in \mathbb{N}\}\$ are i.i.d normal random variables with mean zero and variance 1, and let $S_n := X_1 + \cdots + X_n$. Compute

$$\lim_{n \to \infty} \frac{1}{n} \log \mathbb{E}\left(\left(1 + \frac{S_n}{n} \mathbf{1}_{|S_n| < n} \right)^n \right)$$

Take as true that the law of S_n/n satisfies the LDP with rate n and rate function $I(x) = x^2/2$.

• Problem 4.

Assume (X_n, Y_n) is a random sequence in \mathbb{R}^2 whose law satisfies the LDP with rate n and rate function $I(x, y) = x^2 + (x - y)^2$.

Prove that the law of the sequence $X_n Y_n$ satisfies the LDP with rate n, and compute the rate function.

Hints and answers

• Problem 1.

We should show that for some μ it holds

$$\lim_{n \to \infty} \mathbb{P}(X_n \ge \mu + \epsilon) = \lim_{n \to \infty} \mathbb{P}(X_n \le \mu - \epsilon) = 0$$

We use large deviations to bound the probabilities.

$$\overline{\lim_{n \to \infty}} \, \frac{1}{n} \log \mathbb{P}(X_n \ge \mu + \epsilon) \le - \inf_{x \ge \mu + \epsilon} I(x)$$

and similarly for the other probability. If the last inf is say 3, then we will have that for any $\delta > 0$ (we pick $\delta = 0.5$) there is n_0 so that for $n \ge n_0$ we have that the probability is less than $e^{(-3+\delta)n}$, is particular it goes to zero.

We need a μ with $\inf_{x \ge \mu+\epsilon} I(x) > 0$, $\inf_{x \le \mu-\epsilon} I(x) > 0$. Study the rate function, show that it takes its minimum value (which is zero) at $\mu = e^{-1}$. Left of μ , I is strictly decreasing, to the right it is strictly increasing.

- Problem 2. Solution on F.Den Hollander book.
- Problem 3.

The limit equals

$$\lim_{n \to \infty} \frac{1}{n} \log \mathbb{E}\left(e^{n \log\left(1 + \frac{S_n}{n} \mathbf{1}_{|S_n| < n}\right)}\right) = \lim_{n \to \infty} \frac{1}{n} \log \mathbb{E}\left(e^{nF(X_n)}\right)$$

where $X_n = S_n/n$ satisfies the LPD with rate function I, and $F(x) := \log(1 + x \mathbf{1}_{|x|<1})$ it is bounded above (by log 2). Apply Varadhan lemma. Find $\sup_{|x|<1}(F(x) - I(x))$. In fact it is the same as $\sup_{x>-1}(\log(1+x) - I(x)) = F(x_0) - I(x_0)$ with $x_0 = (-1 + \sqrt{5})/2 \in (0, 1)$.

• Problem 4.

We apply the contraction principle for the continuous map $T : \mathbb{R}^2 \to \mathbb{R}$ with T(x, y) = xy. So the rate is

$$J(z) = \inf_{x,y:xy=z} I(x,y) = \inf_{x \in \mathbb{R}} I(x,\frac{z}{x}) = \dots = 2(\sqrt{2}|z|-z)$$