03 April 2008

Toegepaste kansrekening 2WS15 Problem set 5

• Problem 1.

Assume that the sequence of random variables $(X_n)_{n\geq 1}$ satisfies for every z>0

$$\mathbb{E}(z^{X_n}) = (n+2)e^{na(z)} + (n^3 - 1)e^{nb(z)}$$

where $a(z) = (-3 + \sqrt{5 + 4z})/2$ and $b(z) = -2 + \sqrt{z}$.

- 1. Show that the laws $(P_n)_{n\geq 1}$ of $(X_n/n)_{n\geq 1}$ satisfy the LDP, and compute the rate function.
- 2. Show that $X_n/n \to 1/3$ in probability.
- Problem 2.

A function $f: I \to (-\infty, \infty]$, with domain an interval $I \subset \mathbb{R}$, is called convex if

$$f(ax + (1 - a)y) \le af(x) + (1 - a)f(y)$$

for all $x, y \in I$ and $a \in [0, 1]$. Assume that $\{f_t(x) : t \in \mathbb{R}\}$ is a family of functions with domain I and values in $(-\infty, \infty]$, and let $f(x) := \sup_{t \in \mathbb{R}} f_t(x)$

- 1. If all f_t are convex, then f is convex.
- 2. Conclude that the Legendre transform of a function $f : \mathbb{R} \to \mathbb{R}$ is convex.
- 3. If all f_t are lower semicontinuous, then f is lower semicontinuous.
- Problem 3. Let $\Lambda : \mathbb{R} \to [-\infty, \infty]$ be a function and $\Lambda^* : \mathbb{R} \to [-\infty, \infty]$ its Legendre transform.
 - 1. If $0 \in D_{\Lambda}^{o}$, then Λ^{*} has compact level sets.
 - 2. If $D_{\lambda} = \mathbb{R}$ (i.e. Λ is always less than ∞), then $\lim_{|x|\to\infty} \Lambda^*(x)/|x| = \infty$.

Hints and answers

• Problem 1.

Use the Gartner-Ellis theorem. Explain why all the assumptions of the theorem are satisfied. The rate function equals

$$x \log \left(2x(x+\sqrt{x^2+5/4})\right) + \frac{3}{2} - (x+\sqrt{x^2+5/4})$$

For the seconds statement, study the rate function. Recall problem 1 of the previous homework.

• Problem 2.

Easy.

• Problem 3.

First part.

Pick $t_1 < 0 < t_2$ with $\Lambda(t_1), \Lambda(t_1) < \infty$. Then for every $x, \Lambda^*(x) \ge xt_1 - \Lambda(t_1)$ and $\Lambda^*(x) \ge xt_2 - \Lambda(t_2)$. Look at lemma V.4 (ii) for the remaining details.

Second part.

For x < 0, we have $\Lambda^*(x)/x \le t_1 - \Lambda(t_1)/$. First take $x \to -\infty$ to get

$$\lim_{x \to -\infty} \frac{\Lambda^*(x)}{x} \le t_1.$$

Next?