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Abstract

If the Boltzmann-Gibbs state ωN of a mean-field N -particle system

with Hamiltonian HN verifies the condition

ωN (HN ) ≥ ωN (HN1
+ HN2

)

for every decomposition N1 + N2 = N , then its free energy density

increases with N . We prove such a condition for a wide class of spin

models which includes the Curie-Weiss model, its p-spin generaliza-

tions (for both even and odd p), its random field version and also the

finite pattern Hopfield model. For all these cases the existence of the

thermodynamic limit by subadditivity and boundedness follows.
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1 Introduction

The rigorous theory of the thermodynamic limit which already in the six-

ties was a well established part of equilibrium statistical mechanics [Ru]

received recently a new impulse thanks to the treatment of the Sherrington-

Kirkpatrick [MPV] model of the mean field spin glass done by Guerra and

Toninelli [GuTo]. Moreover in a sequel work [Gu] it became clear that a good

control of the limit, especially when it is obtained by monotonicity through

subadditivity arguments, may lead to sharp bounds for the model and carries

important informations well beyond the existence of the limit itself. In this

paper we build a theory of thermodynamic limit which apply to a family

of cases including both random and non-random mean field models like the

Curie Weiss model [Ba], its p-spin generalizations, its random field version

[MP], and also the finite pattern Hopfield model [Ho]. With respect to the

theory relative to the random case [CDGG] we use here a different interpo-

lation technique which works pointwise with respect to the disorder. The

novelty of our approach relies on the fact that while in the previous case the

condition for the existence of the limit is given in terms of a suitably deformed

quenched measure, in the class of models we treat here we are able to give a

condition with a direct thermodynamic meaning: the Bolztmann-Gibbs state

for a large system provides a good approximation for the subsystems. The

fact that our existence condition is fully independent from the interpolation

parameter relies on the convexity of the interpolating functional, a property

still under investigation for the spin glass models [CG1, CG2].
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2 Definitions and Results.

We consider a system of N sites: {1, 2, ..., N}, to each site we associate a

spin variable σi taking values in {±1}. A spin configuration is specified

by the sequence σ = {σ1, σ2, . . . , σN} and we denote the sets of all spin

configurations by ΣN = {±1}N . We will study models defined by a mean

field Hamiltonian, i.e. for a given bounded function g : [−1, 1] → R,

HN(σ) = −Ng(mN ) (1)

where

mN(σ) =
1

N

N
∑

i=1

σi . (2)

Definition 1 For each N and a given inverse temperature β we introduce

the partition function

ZN =
∑

σ∈ΣN

e−βHN (σ) , (3)

the free energy density (and the auxiliary function αN)

− βfN =
1

N
ln ZN = αN , (4)

and, for a generic observable O(σ), the Boltzmann-Gibbs state

ωN(O) =

∑

σ∈ΣN
O(σ)e−βHN (σ)

ZN

. (5)

We can now state our main result:

THEOREM 1 Let HN(σ) be a mean field Hamiltonian (see eq. (1), (2)).

If for every

partition of the set {1, 2, ..., N} into {1, 2, ..., N1} and {N1+1, ..., N} with

N = N1 + N2 and
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HN1
= HN1

(σ1, ..., σN1
) , HN2

= HN2
(σN1+1, ..., σN) , (6)

the condition

ωN(HN) ≥ ωN(HN1
+ HN2

) , (7)

is verified, then the thermodynamic limit exists in the sense:

lim
N→∞

αN = inf
N

αN = α. (8)

3 Proof

Definition 2 Let define the interpolating Hamiltonian as a function of the

parameter t ∈ [0, 1]:

HN(t) = tHN + (1 − t)[HN1
+ HN2

] , (9)

and consider its relative partition function ZN(t), free energy density fN (t)

and Boltzmann state ωN, t.

The interpolation method that we are going to use is based on the sign control

for both the first and second derivative of αN(t). More precisely it holds the

following:

Lemma 1 Let HN be the mean field Hamiltonian and HN(t) its relative

interpolation.

If
d

dt
αN(t) ≤ 0 (10)
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for all t ∈ [0, 1], then

αN ≤
N1

N
αN1

+
N2

N
αN2

, (11)

for each decomposition N = N1 + N2.

Proof: trivially follows from the fundamental theorem of calculus and from

the observation that definition (9) implies:

ZN(1) = ZN , (12)

αN(1) = αN , (13)

ZN(0) = ZN1
ZN2

, (14)

and

αN(0) =
N1

N
αN1

+
N2

N
αN2

. (15)

�

Lemma 2 Computing the t derivative of αN (t), we get:

α′(t) =
d

dt

1

N
log ZN(t) = −

β

N

∑

σ∈ΣN

[HN − HN1
− HN2

]
e−βHN (t)

ZN(t)

= −
β

N
ωN, t[HN − HN1

− HN2
]. (16)

Lemma 3 The second derivative of αN (t) is positive:

α′′
N(t) =

d2

dt2
αN(t) ≥ 0 , (17)
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Proof: a direct computation gives

α′′
N (t) =

d

dt

(

−
β

N
ωN, t[HN − HN1

− HN2
]

)

=
β2

N

(

ωN, t

[

(HN − HN1
− HN2

)2
]

− ω2
N, t [HN − HN1

− HN2
]
)

. (18)

From Jensen inequality applied to the convex function x 7→ x2, it follows

that α′′
N(t) ≥ 0. �

We are now able to prove the statement of Theorem 1.

Proof of THEOREM 1. From Lemma (2) we notice that the hypothesis

(7)

ωN (HN) ≥ ωN (HN1
+ HN2

)

is equivalent to the condition α′
N(1) ≤ 0. On the other hand from Lemma

(3) it follows that α′
N(t) is an increasing function of t. This means that

the determination of the sign of α′
N (t) can be in general established by the

evaluation of the sign in the extremes of the interval [0,1]. In particular we

have:

α′
N(1) ≤ 0 =⇒ α′

N(t) ≤ 0, ∀t ∈ [0, 1] (19)

Using now Lemma (1), the subadditivity property (11) holds for αN and

then, by standard arguments [Ru],

lim
N→∞

αN = inf
N

αN (20)

The existence of thermodynamic limit finally follows from boundedness of

the function g in Eq. (1). Indeed, calling K the maximum of g(x) on the
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interval [−1, 1], we have

αN =
1

N
ln

∑

σ∈ΣN

eβNg(mN ) ≥
1

N
ln eβNK = βK . (21)

4 Applications

In this Section we identify a class of mean field models for which the hypoth-

esis of our theorem are verified. Specifically these will be all models such

that the function g of formula (1) is convex or polynomial.

Corollary 1 Let the Hamiltonian be of the form

HN(σ) = −Ng(mN ) (22)

with g : [−1, 1] → R a bounded convex function. Then the thermodynamic

limit of the free energy exists.

Proof: For a given σ ∈ ΣN and for every decomposition N = N1 + N2 we

define the quantities

mN1
(σ) =

1

N1

N1
∑

i=1

σi mN2
(σ) =

1

N2

N
∑

i=N1+1

σi , (23)

so that the total magnetization is a convex linear combination of the two:

mN =
N1

N
mN1

+
N2

N
mN2

. (24)

Using this definitions the hypothesis (7) of Theorem (1) is verified:

ωN (HN − HN1
− HN2

) = −NωN

(

g(mN) −
N1

N
g(mN1

) −
N2

N
g(mN2

)

)

≥ 0

(25)

where the last inequality follows from convexity of g. �
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Remark 1 The previous Corollary can be obviously generalized to the case

where the function g is a convex bounded function of many variables, each

of them fulfilling the property (23).

Corollary 2 Let the Hamiltonian be of the form

HN(σ) = −Ng(mN ) , (26)

with g : [−1, 1] → R a polynomial function of degree n ∈ N. Then the

thermodynamic limit exists.

Proof: First of all we consider the case g(x) = xk (the generalization will

follow in a simple way) with associate Hamiltonian

HN(σ) = −Nmk
N = −

1

Nk−1

N
∑

i1,i2,...,ik=1

σi1σi2 · · ·σik . (27)

By splitting the summation into two pieces, the first containing the summa-

tion with indexes all different among themselves, the second containing the

remaining terms, we have

HN(σ) = −
1

Nk−1

[

∑

i1 6=...6=ik

σi1 · · ·σik +

∗
∑

i1,...,ik

σi1 · · ·σik

]

(28)

where the second summation
∑∗ includes all terms with at least two equal

indexes. A simple computation shows that

1

Nk−1

∗
∑

i1,...,ik

σi1 · · ·σik = O(1) (29)

Defining now the model with Hamiltonian

H̃N(σ) = −
1

(N − 1)(N − 2) · · · (N − k + 1)

N
∑

i1 6=i2 6=...6=ik=1

σi1σi2 · · ·σik , (30)
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it follows that

HN(σ) =
(N − 1)(N − 2) · · · (N − k + 1)

Nk−1
H̃N(σ) + O(1)

= H̃N(σ) + O(1) (31)

By Eq. (3) and (4) obviously one has that the two models HN and H̃N have

the same thermodynamic limit (if any). On the other hand for the model

H̃N we have

ωN(H̃N) = −
1

(N − 1)(N − 2) · · · (N − k + 1)

∑

i1 6=i2 6=...6=ik

ωN(σi1σi2 · · ·σik)

= −NωN (σ1σ2 · · ·σk) (32)

where the last equality follows from permutation invariance ( ωN(σi1σi2 · · ·σik)

does not depend on the choice of the indexes). Analogously one can repeat

the same computation for H̃N1
and H̃N2

. This yields that Hypothesis (7) of

Theorem (1) is verified as an equality

ωN

(

H̃N − H̃N1
− H̃N2

)

= 0 , (33)

implying the existence of thermodynamic limit for the model H̃N , and so for

the model HN .

Since we have proved the Corollary for g(x) = xk, the case of a generic

polynomial function of degree n

g(x) =

n
∑

k=0

akx
k (34)

is treated by the same argument, applied to each monomial of the sum.

�
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4.1 Examples

1. The Curie-Weiss models.

For every integer p, with p < N , consider the model defined by

HN (σ) := −
1

Np−1

N
∑

i1,i2,...,ip=1

σi1σi2 · · ·σip (35)

which represents the generalized Curie Weiss model with p-spin inter-

action. The standard Curie-Weiss model corresponds to the case p = 2.

From eq. (2) the previous Hamiltonian can be written as

HN = −Nmp
N (36)

and the existence of the thermodynamic limit is then implied by Corol-

lary (2). Moreover, the same result holds for any linear combination

(see Eq.(34)) of generalized Curie Weiss model with p-spin interaction,

both ferromagnetic and antiferromagnetic.

2. The random field Curie Weiss model.

Here we consider the model defined by (see [MP] for a review)

HN(h, σ) := −
1

N

N
∑

i,j=1

σiσj +
N

∑

i=1

hiσi (37)

where {hi}i=1,...,N is a family of i.i.d. Bernoulli random variables, with

probability distribution

p(hi) =







1/2, if hi = 1,

1/2, if hi = −1.
(38)

10



For a given realization of the random field h, we define the quantities

m+
N(σ, h) =

1

N

N
∑

i=1

1 + hi

2
σi (39)

m−
N(σ, h) =

1

N

N
∑

i=1

1 − hi

2
σi (40)

The Hamiltonian can be written in terms of these variables as

HN = −Ng(m+
N , m−

N) (41)

where

g(m+
N , m−

N) = (m+
N + m−

N)2 − (m+
N − m−

N) (42)

Since this function is obviously convex with respect to both m+
N and

m−
N , bounded by 2, and

m±
N(σ, h) =

N1

N
m±

N1
(σ, h) +

N2

N
m±

N2
(σ, h) (43)

the Corollary (1) can be applied and we find (pointwise in the h’s)

αN(h) ≤
N1

N
αN1

(h) +
N2

N
αN2

(h) . (44)

Averaging now over the h’s, the subadditivity property for quenched

αN is proved and this yields the (20).

3. The Hopfield model.

The Hamiltonian of the Hopfield model (see [Bo] for a review) is given

by :

HN(ξ, σ) := −
M

∑

µ=1

1

N

N
∑

i,j=1

ξµ
i ξµ

j σiσj (45)
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where M is the (fixed) number of pattern and the {ξµ
i }

µ=1,...,M
i=1,...,N is a

family of i.i.d. Bernoulli variables with probability distribution

p(ξµ
i ) =







1/2, if ξ = 1,

1/2, if ξ = −1.
(46)

Defining the quantities

mµ
N(σ, ξ) =

1

N

N
∑

i=1

ξµ
i σi , ∀µ = 1, . . . , M , (47)

the Hamiltonian (45) can be written as

HN(σ, ξ) = −N
M

∑

µ=1

(mµ
N (σ, ξ))2. (48)

The model can be included in the general treatment of the previous

section by considering a function g of M variables,

g(m1
N(σ, ξ), . . . , mM

N (σ, ξ)) =
M

∑

µ=1

(mµ
N (σ, ξ))2 (49)

such that

HN = −Ng(m1
N , . . . , mM

N ). (50)

Since

mµ
N(σ, ξ) =

N1

N
mµ

N1
(σ, ξ) +

N2

N
mµ

N2
(σ, ξ) ∀µ = 1, . . . , M (51)

and the function g is convex with respect to every mµ
N and bounded by

M , using Corollary (1) we have (pointwise in the ξ’s)

αN (ξ) ≤
N1

N
αN1

(ξ) +
N2

N
αN2

(ξ) . (52)

Averaging over the ξ’s yields the (20).
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Remark 2 We want to notice that the method shown doesn’t apply to

the Hopfield model with a thermodynamically growing number of pattern

defined for every positive constant γ by

HN(ξ, σ) := −

γN
∑

µ=1

1

N

N
∑

i,j=1

ξµ
i ξµ

j σiσj , (53)

because this Hamiltonian is not of the form (1).
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