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Abstract

We introduce a family of models for heat conduction with and without momentum

conservation. They are analytically solvable in the high temperature limit and can

also be efficiently simulated. In all cases Fourier Law is verified in one dimension.
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1 Introduction

When there is a temperature difference between the boundaries of a material, heat is

transported from the hottest to the coldest side. The phenomenological law governing

this process has been known for a long time: the Fourier law J = k∇T states the

proportionality of the heat flux J (the amount of heat transported through the unit

surface in unit time) to thermal gradient ∇T (the spatial derivative of the temperature

field). The proportionality constant k is called thermal conductivity coefficient. Almost

two centuries after Fourier’s law was discovered, its microscopic derivation is still an

open problem from a fundamental point of view. At stake is not only a question of

mathematical rigor: spatial constraints in certain experimental systems can significantly

alter the transport properties in ways that are not yet fully understood. Systems with

dimension d ≤ 2 can have a thermal conductivity that can even become anomalous (i.e.

diverging in the thermodynamical limit), implying a breakdown of the usual Fourier law.

In the last few years such systems became experimentally realizable, and this has spurred a

renewed interest in the theoretical basis among the physics community (for recent reviews

see [1, 2]).

An important family of models which has been extensively studied consist of regular

periodic d dimensional lattices of N = Ld point-like atoms interacting with their neighbors

through non-linear forces, as in the Fermi-Pasta-Ulam (FPU) chain. For the linear chain

(d = 1) of oscillators it has been rigorously established in the sixties [3] that the heat

conductivity diverges in the thermodynamic limit like k ∼ L. This result was later

generalized to the higher dimensional case in [4].

Indeed, the dynamics of such a system can be decomposed into the evolution of non-

interacting waves (normal modes) which do not exchange energy amongst each other,

thus giving rise to ballistic transport. It is nowadays clear that in order to have a fi-

nite thermal coefficient the model must posess an efficient scattering mechanism between

phonons. However, numerical studies indicate that also in the presence of anharmonicity

heat conductivity is still anomalous, with a power law divergence k ∼ Lα, where α ∼ 0.37

[5] for a linear chain. In recent years, an increasingly large amount of (very often con-
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flicting) numerical results have appeared in the literature. Although some progress have

been achieved, many puzzles remain. At present, the picture we have for 1d is as follows:

• Anomalous conductivity occurs in cases in which momentum is conserved, i.e. at

least one acoustic phonon branch is present in the harmonic limit [5, 6, 7, 9, 10, 11].

The reason of the anomalous behavior has been traced back to the low-frequency

Fourier modes, which are only weakly damped by the interaction with other modes

so they behave as very efficient energy carriers for the system. The condition of

momentum-conservation is however not sufficient: the ‘coupled rotor model’ seems

to have normal conductivity [12, 13], the reason being attributed to phase jumps

between barriers of the periodic potential which act as scatters even for the long

wave-length modes.

Here a short discussion is in order: if a system is composed of free particles, mo-

mentum conservation is associated with the symmetry with respect to simultaneous

translation of all particles. In a system such as the FPU or the coupled rotator

system, we have particles with coordinates xi – a deviation from the lattice position

in the former, and an angle in the latter case. By translation invariance we may

mean the symmetry ‘in the coordinates’ i → i + 1, or the symmetry ‘in the fields’

xi → xi +δ. The issue is somewhat mixed up by the fact that in the FPU system we

tend to picture the xi along the line joining the baths, while for the coupled rotors

we think of the xi as being transversal. In fact, as already pointed out in [34], the

difference between ‘longitudinal’ and ‘transversal’ only arises if the thermal baths

interact with all the particles which reach a certain position (so that there is contact

with the bath or not depending on the actual value of xi), while it is irrelevant if

the bath is connected to some fixed particles at the end, whatever their positions

xi might be. One could conjecture that that the transverse nature of the xi in the

rotor case was responsible for the finite conductivity, although this would suggest

that the FPU chain with baths coupled to fixed particles at the ends should have

normal conductivity too, contrary to observation.
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• Finite thermal conductivity has been obtained for special models with interaction

with a substrate which violates momentum conservation (the so-called Ding-a-ling

[14] and Ding-dong [15] models or various Klein-Gordon chains [16, 17]).

• A Hamiltonian system for which a macroscopic transport law has been rigorously

derived is a gas of noninteracting particles moving among a fixed array of periodic

convex scatters (periodic Lorentz gas or Sinai billiard) [18, 19, 20]. More recently,

a modified Lorentz gas with fixed freely-rotating circular scatters has also been

considered [21]. In a further development, Eckmann and Young [31] introduced a

related model (having also normal heat conduction) that can be solved analytically

in a limit.

• The consequences of the underlying microscopic dynamics are very controversial:

while it was believed for a long time that dynamical chaos and full hyperbolicity

is a necessary and sufficient condition in order to have finite conductivity, recent

examples show that: i) deterministic diffusion and normal heat transport can take

place in systems with linear instability [22, 23, 24]; ii) there are systems with positive

Lyapunov exponents (FPU model) where the heat conduction does not obey Fourier

law.

• The role of disorder (in the form of random masses of the atoms) has also been

considered. For the linear oscillators it has been rigorously shown that disorder is

not enough to reproduce correctly Fourier law (in fact one finds k ∼ L1/2 [25, 26, 27]).

For non-linear oscillators the anomalous behavior has been confirmed numerically

[28].

• Stochastic models have also been studied [29, 30] and a finite thermal conductivity

has been found. The large deviation properties of this kind of models have also been

investigated recently [32]. While these models can be useful to obtain exact results

under the assumption of suitable Markovian dynamics, one would like to obtain an

explanation of Fourier law starting from a pure deterministic description.
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In the presence of anomalous heat conductivity there exist mainly two general theoretical

predictions:

• A self consistent ‘mode-coupling’ theory which predicts an exponent α = 2/5 [33, 2]

• Renormalization group analysis of a set of hydrodynamic equations for a 1d fluid

which yields α = 1/3 [34]. It has been suggested that a crossover might exist

between these two behaviours, see [35].

Both of them apply to momentum conserving systems. It is worth mentioning that present

numerical simulations are not fully in agreement with either mode-coupling or liquid the-

ory predictions. Some authors suggested that the discrepancy might arise because inter-

mediate sizes and timescales currently available in simulations are not able to probe the

real behavior in the thermodynamic limit. In this respect, the problem must be admit-

tedly seen as an open question.The situation is even less clear in 2d lattices. Theoretical

arguments support a weak logarithmic divergence for the thermal conductivity. On the

other hand numerical simulations gave very conflicting results: logarithmic divergence

[36], power law anomalous behavior [37] and even finite thermal conductivity [38].

To understand some of the basic features of the energy transport in 1-d systems, we

develop in this paper a simple model, which can be cast also in the form of a set of discrete

coupled maps such that in a limit the continuum version is reobtained. It can be solved

analytically for high energies, and it is suitable at all energies for numerical simulations

because it is much less computer-time demanding compared to a continuous flux. Because

the approach to the high-energy value of the conductivity can be seen in the simulations,

the discussion is not plagued with doubts as to whether the results are preasymptotic.

We have found no differences between the case in which momentum is conserved and the

case in which it is not.
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2 Hamiltonian model

We consider a chain of particles for simplicity in a one-dimensional lattice. In its most

general form, the model is described by the following Hamiltonian

H(x, p) =

N
∑

i=1

1

2

(

pi + Ai

)2

(1)

where A = (A1(x), A2(x), . . . , AN(x)) is a generalized ‘vector’ potential in R
N and x =

(x1, x2, . . . , xN), p = (p1, p2, . . . , pN) denote the particles position and momentum respec-

tively. The Hamiltonian equations of motion read

dxi

dt
= pi + Ai

dpi

dt
= −

N
∑

j=1

(

pj + Aj

)∂Aj

∂xi
(2)

They are more transparent in Newtonian formulation

dxi

dt
= vi

dvi

dt
=

N
∑

j=1

Bijvj +
∂Ai

∂t
(3)

where

Bij(x) =
∂Ai(x)

∂xj
− ∂Aj(x)

∂xi
(4)

is an antisymmetric matrix containing in the entries the ‘magnetic fields’ acting on the

particles.

2.1 Conservation Laws

Conservation of Energy: Even if the forces depend on velocities and positions, the model

always conserves the total (kinetic) energy if the fields are time-independent due to the

antisymmetry of the matrix B:

d

dt

(

∑

i

1

2
v2

i

)

=

N
∑

i,j=1

Bijvivj = 0 (5)
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Conservation of Momentum: Additional conserved quantities can be imposed by a suitable

choice of the magnetic fields. For example, if we choose the Ai(x) such that they are

left invariant by the simultaneous translations xi → xi + δ, then the quantity
∑

i pi is

conserved. If in addition we require that
∑

iAi(x) = 0 ∀x, then this also implies the

conservation of
∑

i ẋi.

3 Time-independent Hamiltonian, continuous time

The simplest way to realize this is the following: for a system with only energy conserva-

tion, we may put Ai = fi(xi, xi+1) for some functions fi. For periodic boundary conditions,

one identifies the sites modulo N . Then, the matrix B takes the nearest-neighbour form:

B =



































0 B1 0
. . . 0 −BN

−B1 0 B2 0
. . . 0

0 −B2 0 B3 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . −BN−3 0 BN−2 0

0
. . . 0 −BN−2 0 BN−1

BN 0
. . . 0 −BN−1 0



































(6)

An open chain is obtained putting BN = 0. A momentum-conserving model with next-

to-nearest neighbor interaction can be obtained with:

Ai = Ci+1 − Ci

Ci = fi(xi+1 − xi) (7)

for any functions fi. Again, one can take periodic boundary conditions (and then the

indices are interpreted as modulo N), or consider an open chain, in which case one has

to make C1 = 0.

In both cases the end sites may be coupled to Langevin baths by modifying the equa-

tions of motion of p1 and pN adding a noise and a friction term, satisfying the fluctuation-

dissipation relations for temperatures T1 and TN , respectively.
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4 Discrete time

One can also consider discrete-time versions of these models, yielding a system of cou-

pled maps. These have the advantage of being particularly easy to simulate, and, more

importantly, they are analytically solvable in the high energy limit. As we shall see, the

price we shall pay is that the map will not be simplectic [8], but it does preserve the

phase-space volume and the Gibbs measure.

We first describe a version without momentum conservation in detail, and then de-

scribe more briefly the momentum-conserving case. We consider impulsive magnetic fields

which act periodically and are of the form:

Bi,j(x, t) = Beven
ij (x)Keven(t) +Bodd

i,j (x)Kodd(t) (8)

where

Keven(t) =
+∞
∑

n=−∞

∆(t− nτ)

Kodd(t) =

+∞
∑

n=−∞

∆(t− (n + 1/2)τ) (9)

where ∆(u) is a square pulse of intensity k and duration 1/k, and we consider k → ∞.

During the short time when the fields are acting, the particles move a negligible amount,

but their velocities rotate under their action. On the contrary, between kicks the velocities

are constant and the motion is uniform. Without loss of generality we can set τ = 1

because changing the time interval between kicks amounts to rescaling the velocities. In

the spirit of Refs. [29, 30, 31], we consider a chain with even N and choose the Beven
ij and

Bodd
ij such that the impulsive fields couple sites pairwise as follows:

• Bodd
ij is of the form (6) with B2 = B4 = B6 = ... = 0, and B1 = G(x1, x2),

B3 = G(x3, x4), ..., etc.

• Beven
ij is of the form (6) with B1 = B3 = B5 = ... = 0, and B2 = G(x2, x3),

B4 = G(x4, x5), ... etc.
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A periodic chain might be used, or, as we shall do later, one can connect the end sites

to thermal baths during a half-cycle between kicks. The definition is completed by saying

that whenever a site is connected to a heat bath during half a cycle, the interaction is so

strong as to completely equilibrate the site at the bath’s temperature.

As we mentioned above, the map as we define it is not symplectic, even though it

might seem as the composition of Hamiltonian steps. The reason for this is subtle: just

before the end of the period during which the magnetic is on, the velocity is vi = pi +Ai,

and just after it is turned off it is v′i = pi. If we wish to impose that vi = v′i (which we need

for energy conservation), we see that this implies a jump in the momenta of magnitude

Ai(x). This is a transformation that is not symplectic unless ∂Ai

∂qj
=

∂Aj

∂qi
, as is easy to

check. An alternative way to see this issue is to consider the map as resulting from a

time-dependent field, and then adding a (nonconservative!) force that exactly cancels ∂Ai

∂t

in (3), so that energy is conserved. Note, however, that the map conserves the volume for

all trajectories, and leaves the Gibbs measure invariant, even if there is a potential V (q)

acting during the intervals between kicks.

Because in this time-dependent version we have given up symplecticity, we might just

as well give up the requirement that the Bij = Bji derive from a ‘vector potential’ Ai.

This will neither alter the equilibrium nor the volume conservation properties of the map,

but gives us the freedom to use simpler functional forms for the Bij . We tried different

possibilities for the x-dependence of the magnetic field acting on each couple of sites,

obtaining similar results. We present here those corresponding to the choice:

G(xi, xi+1) = K[(xi + xi+1) − 2π] (10)

With this choice the magnetic fields take values in the interval [−2Kπ, 2Kπ], where K is

a constant parameter.

By integrating the equations of motion (3) between two successive kicks, and having

imposed the condition of continuity of the velocities described above, we arrive at the

following discrete time dynamics: denote by Ri(t) the 2 × 2 rotation matrix

Ri(t) =





c(Bi) s(Bi)

−s(Bi) c(Bi)



 (11)
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where

c(Bi) = cos(Bi(t))

s(Bi) = sin(Bi(t)) (12)

and consider the matrices C(t) and D(t) composed of a series of two by two blocks:

C(t) =

































































R1

0 0

0 0

0 0

0 0
· · ·

0 0

0 0

0 0

0 0

0 0

0 0
R3

0 0

0 0

0 0

0 0
R5

0 0

0 0

...

. . . ...

0 0

0 0
RN−3

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0
. . .

0 0

0 0
RN−1

































































(13)

D(t) =



































































0 0 0 0 0 · · · 0 0 0 0 0

0

0
R2

0

0

0

0
R4

0

0

...

. . . ...

0

0
RN−4

0

0

0

0
RN−2

0

0

0 0 0 0 0 · · · 0 0 0 0 0



































































(14)
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Given x(t), v(t), the position-velocity vector at time t, its evolution will be

x(t+ 1/2) = x(t) + v(t)

v(t+ 1/2) = C(t) · v(t) (15)

x(t+ 1) = x(t+ 1/2) + v(t+ 1/2)

v(t+ 1) = D(t) · v(t+ 1/2) + ξ(t) (16)

where ξ(t) is a N -dimensional vector which is introduced to model interaction with heat

baths

ξ(t) =



































ξ1(t)

0

0
...

0

0

ξN(t)



































(17)

At each time the non-zero components ξ1(t) and ξN(t) are i.i.d. random variables with

Gaussian distribution

P (y) =
1√

2πσ2
e−

y2

2σ2 (18)

where the variances of ξ1(t) and ξN(t) are respectively T1 and TN .

All odd sites interact with the site to their right during half a cycle, and with the site

to their left during the other half cycle. The sites at the ends interact with the baths

during the corresponding half-cycles, and during that time they completely thermalize.

In order to keep things simple we restrict the configuration space of each particle to the

torus (x ∈ [0, 2π]), so that all the xi(t) are understood modulo 2π.

As usual with these maps, if we consider the limit of small velocities and weak kicks,

we recover a continuous evolution.
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4.1 Chaoticity properties of the map.

In order to see what chaoticity properties to expect from a chain, we begin in this section

with the study of the dynamical properties of the elementary map with only two sites

(x1, x2) ≡ (x, y). This a particle moving in the x−y plane (actually we restrict ourselves to

the torus T
2) under the action of an impulsive field along the z direction whose amplitude

depends on the particle’s position itself. Between kicks the motion is free; at each kick

the velocity vector is rotated by an angle which is exactly given by the magnetic field,

evaluated at the point where the kick takes place. Since the dynamics conserves the

energy the accessible phase space is 3-dimensional. Denoting by v the modulus of the

velocity (v =
√

v2
x + v2

y) and by β its angle w.r.t. the x direction in the plane, we have

x(t+ 1) = {x(t) + v cos(β(t))} mod (2π)

y(t+ 1) = {y(t) + v sin(β(t))} mod (2π)

β(t+ 1) = β(t) +K[(x(t+ 1) + y(t+ 1)) − 2π] (19)

The two-site map has two control parameters: the modulus of the velocity v (a constant

of motion) and the amplitude of the field K. To illustrate the effect of varying them we

have studied the Poincaré section. In Fig. (4.1) we plot the surface section obtained by

using the plane y = 0 for K = 1 and several initial conditions. We see that as v tends to

zero the trajectories are regular. As v increases, a smooth transition to a chaotic behavior

is observed. If one considers a chain of more than two sites of coupled maps of this kind,

one can expect the property of chaoticity to be stronger for larger system sizes.

4.2 Numerical Analysis of the Fourier Law

To compute the heat conductivity one has two possible procedures: the first is the direct

non-equilibrium measure with two reservoirs at different temperatures, taking the ratio

between the time averaged flux and the temperature gradient. If a linear response regime is

applicable, one can also use the Green-Kubo formula, which enables to calculate transport

coefficients as integrals of autocorrelation function in equilibrium states. The thermal
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Figure 1: Poincare sections for the map (19). Here K = 1 and v = 0.01 (top left), v = 0.6 (top

right), v = 1. (bottom left), v = 5. (bottom right)
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conductivity is then given by

k(T ) =
N

T 2

∞
∑

t=0

< J(t)J(0) >GB (1 − δt,0
2

) (20)

where J(t) is the flux per particle

J(t) =
1

N

N
∑

i=1

Ji(t) (21)

The local heat flux Ji(t) is given by the change in energy for the couple (i, i + 1) before

and after a kick. The angular brackets denote here an equilibrium average and the factor

with the Kronecker delta function arise from the discreteness of time.

We first performed the numerical simulation with two heat baths at temperatures

TL = 0.08 and TR = 0.12. After a transient of 107 steps, we checked that a linear

temperature profile is established by measuring the temporal average of twice the kinetic

energy at each site (see Fig. (4.2)-left). We also kept track of the time averaged flux until

it converged to its stationary value. We used at least 108 steps to check that fluctuations

are less then a few percent. The measured heat conductivity is reported in Fig. (4.2)-right.

for different chain lengths from N = 8 to N = 2048. One can see that the conductivity

has some fluctuation in the interval [0.37, 0.38] with an overall trend to stabilize, which

suggests the approach to a finite value in the thermodynamic limit. We ran the dynamics

for a large number of different initial random conditions (at least 103) and computed

the heat conductivity by the Green-Kubo formula. We chose e = E/N = 0.05 which,

according to the virial theorem, gives a kinetic temperature T = 0.1, the average value of

the temperature of the two baths. The best fit of the data shows a convincing evidence

that finite size effect are of the form O(1/N) with an asymptotic value k∞ = 0.376.

4.3 High temperature limit of the discrete model

In the high temperature limit the velocities ẋi are large so that between two consecutive

kicks new positions are translated by a large amount. Since the spatial coordinates are

taken modulo 2π, the sequence of positions constitutes a (quasi) random number gener-

ator. Hence, we assume that in this limit, the position of the particle when the fields

14
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Figure 2: Results of simulations for K = 1. Left: temperature profile with two heat baths for

N = 16 (circles) and N = 2048 (full line). Right: Heat conductivity versus the chain length

N obtained throught non equilibrium simulations (squares) and GK formula (triangles). The

continous line represent the best fit with a function k∞ + a/N .

are flashed can be taken as uniformly randomly distributed. Because the magnetic fields

are functions of the positions, this means that the fields themselves are random, with a

distribution that is easily derived from the position dependence of the fields. All in all,

what we have is that the velocity vector turns at each kick by a random amount, the

probability distribution of which is known. Let us consider the change in energy for the

couple (i, i+ 1) before (ei = 1

2
v2

i ) and after (e′i = 1

2
v

′2
i ) a kick.

e′i = c2(Bi) ei + s2(Bi) ei+1 + 2 s(Bi) c(Bi)
√
eiei+1

e′i+1 = s2(Bi) ei + c2(Bi) ei+1 − 2 s(Bi) c(Bi)
√
eiei+1 (22)

where, of course, e′i + e′i+1 = ei + ei+1. Suppose now that xi, xi+1 are well approximated

by independent uniform random process on the interval [0, 2π]. Then the magnetic field

(10) will be a random variable and, with this particular choice for G, its probability

distribution in the interval [−2Kπ, 2Kπ] will be

p(B) =







1

2Kπ

(

1 + 1

2Kπ
x
)

x ∈ [−2Kπ, 0]

1

2Kπ

(

1 − 1

2Kπ
x
)

x ∈ [0, 2Kπ]
(23)
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The mean energy of a couple of particles will be redistributed according to the rule:

< e′i > = xK < ei > + (1 − xK) < ei+1 >

< e′i+1 > = (1 − xK) < ei > + xK < ei+1 > (24)

since

< c2(Bi) > =

∫

2Kπ

−2Kπ

cos2(B)p(B)dB =
1

2

(

1 +

(

sin(2Kπ)

2Kπ

)2
)

= xK

< s2(Bi) > =
1

2

(

1 −
(

sin(2Kπ)

2Kπ

)2
)

= 1 − xK

< s(Bi)c(Bi) > = 0 (25)

Here expectation values are taken over an ensemble of systems having the same velocities

but random positions. If we choose K to be an integer or a half-integer, the dynamical

rule (24) becomes (only as far as the means are concerned) the one of the stochastic model

introduced by Kipnis, Marchioro and Presutti [29, 30, 31], where the total energy of a

particle pair is equally redistributed between the two (x = 1/2).

Let us give here a short computation of the heat conductivity in the case K = 1. The

idea is to use first self-averaging with respect to the noise and then stationarity. The local

‘temperature’ is defined as twice the kinetic energy Ti(t) = < v2
i (t) >. Using (15)-(16) and

imposing stationarity Ti(t) = Ti(t+ 1) = Ti one obtains the following recursion relation:

T1 = TL

−Ti−2 + 2Ti − Ti+2 = 0 i = 2, 4, 6, . . . , N − 2

Ti+1 = Ti i = 0, 2, 4, 6, . . . , N

TN = TR (26)

This can be easily checked starting from a configuration (TL, T2, T2, T4, T4, ..., TN−2, TN−2, TR),

making it evolve through the two kicks, and demanding that the same configuration is

recovered. From the solution of the system (26), a linear temperature profile is obtained

(apart from the fact that the sites are in pairs):

Ti = TL +
(TR − TL)

N
i (27)
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It is easy to write a time-dependent version of (26), and check that the convergence to

this profile is rapid, independently of the length of the chain, as it is essentially a diffusion

equation.

Between t and t+ 1/2 we consider the local flux of the odd sites, while between t+ 1/2

and t+ 1 we consider the local flux on the even sites. Self-averaging plus stationary gives

j0 =
1

2
(TL + T1) − TL

ji =
1

2
(Ti + Ti+1) − Ti i = 1, 2, . . . , N − 1

jN =
1

2
(TR + TN) − TN (28)

The solution is an average site-independent local flux

ji =
1

2

TR − TL

N
(29)

and a spatial average flux

J =
1

N

N
∑

i=0

ji =
1

2

TR − TL

N
(30)

Putting together (27) and (30) we verify Fourier law J = k∇T with an heat conductivity

k = 1/2.

In Fig. (4.3) we report the result of microcanonical simulations at different temperatures.

One can see that for temperatures T ≥ 10 the heat conductivity is basically constant

and its numerical value coincides with the value we have just calculated in the high

temperature regime.

4.4 Momentum-conserving model

We now run the arguments for a momentum-conserving model. Consider a coupling

between three sites which is given by a magnetic field in the direction (1,1,1). The

analogue of (11) for this case is:

Ri(t) =
1

3











1 + 2 c(Bi) 1 − c(Bi) +
√

3 s(Bi) 1 − c(Bi) −
√

3 s(Bi)

1 − c(Bi) −
√

3 s(Bi) 1 + 2 c(Bi) 1 − c(Bi) +
√

3 s(Bi)

1 − c(Bi) +
√

3 s(Bi) 1 − c(Bi) −
√

3 s(Bi) 1 + 2 c(Bi)











(31)
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Figure 3: Thermal conductivity k versus the temperature (note the log-log scale). The dashed

line corresponds to the value k = 1/2. Results are plotted for three different N values (see leg-

end). Here only a single trajectory has been used in the application of the Green-Kubo formula.

However the good overlap between the three curves indicates reliability of the computation.
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where now

c(Bi) = cos(
√

3Bi(t))

s(Bi) = sin(
√

3Bi(t)) (32)

A simple choice for Bi = G(xi, xi+1, xi+2) is:

G(xi, xi+1, xi+2) = K[(xi + xi+1 + xi+2) − 3π] (33)

Clearly, the velocity in the (1,1,1) direction (the sum of the three velocities) is not affected.

If we now alternate kicks which couple sites (1, 2, 3), (4, 5, 6), (7, 8, 9) ,..., etc, with kicks

which couple sites (2, 3, 4), (5, 6, 7), (8, 9, 10), ..., we obtain a map that at each kick

conserves the total sum of the velocities (and, of course, the energy).

We can repeat the argument in the previous section to obtain the high energy limit. We

set the multiplicative constant K to 1/
√

3, for simplicity. If we consider that at each step

the positions xi, xi+1, xi+2 are uniform and independent random with the choice (33) we

have that:

〈c(Bi)〉 = 〈s(Bi)〉 = 〈c(Bi)s(Bi)〉 = 0 (34)

〈c2(Bi)〉 = 〈s2(Bi)〉 =
1

2
(35)

and we see that the average energies evolve during a kick as:










〈e′i〉
〈e′i+1〉
〈e′i+2〉











=
1

3











1 1 1

1 1 1

1 1 1





















〈ei〉
〈ei+1〉
〈ei+2〉











(36)

Again we can easily find an equation for the Ti, and check that the profile is linear, with

the only difference that now the sites come in triplets:

(TL, TL, T3, T3, T3, T6, T6, T6, . . . , TN−3, TN−3, TN−3, TR) (37)

and the temperatures satisfy

−Ti−3 + 2Ti − Ti+3 = 0 i = 3, 6, 9, . . . , N − 3 (38)
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Figure 4: Same as in Fig.(4.3) but for the momentum conserving case. The analytical high-

temperature value is k = 1.

From this we easily obtain a value for the thermal conductivity k = 1.

The numerical simulations do agree with this value in the high temperature regime

and give a finite heat conductivity at each temperature, see Fig. 4.4

5 A stochastic minimal model

As was done in the previous section for the discrete time model we study here a high

temperature limit which becomes a continuous time model, by replacing the magnetic

fields with suitable random processes.

5.1 Fokker-Planck equation

In the limit in which the field is very weak, and the velocities (and hence the energy) are

very large, we get a velocity field that is randomly exchanging momentum, but in small

amounts each step. The deterministic equations of motion (3) can then be replaced by a
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system of Langevin equations with multiplicative noise

dvi

dt
=

N
∑

j=1

Bijvj (39)

with the Bij of the nearest-neighbour form (6):

Bij = Bi(t)(δi,j+1 − δi+1,j) (40)

and Bi a white, Gaussian random variables with 1

< Bj(t) > = 0 < Bj(t)Bk(t
′) >= 2 δjk δ(t− t′) (41)

Standard techniques [39] yield the following Fokker-Planck equation for the evolution on

the velocities probability distribution

∂P

∂t
= −

N
∑

i=1

L2

i,i+1P (42)

where the operators Li,i+1 are ‘angular momentum’ operators corresponding to the Lapla-

cian on the sphere:

Li,i+1 = vi
∂

∂vi+1

− vi+1

∂

∂vi

(43)

If we add to the bulk system the interaction with two heat baths connected to the first

and last particle (respectively at temperatures TL and TR) and represented as Ornstein-

Uhlenbeck processes, we arrive at

∂P

∂t
=

N
∑

i=1

L2

i,i+1P + ∂1(v1P ) + TL∂
2

1P + ∂N (vNP ) + TR∂
2

NP (44)

This diffusion process has also been considered by Olla [40], in combination with a deter-

ministic harmonic part.

One can also easily write a momentum-conserving variant. Indeed, considering the

low-field version of the conserving map, we get:

∂P

∂t
= −

N
∑

i=1

{Li,i+1 + Li+1,i+2 + Li+2,i}2P (45)

where in a closed chain the indices are understood modulo N .
1This being a multiplicative process, the convention (Ito, Stratonovitch...) should be specified. In

fact, the precise definition will be implicit in the Fokker-Planck equation (42)(43)
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5.2 Expectation values

We would like to compute the energy and flux expectation values and also energy cor-

relations. One may derive an equation of motion for these quantities directly from the

Fokker-Planck equation. Multiplying for instance (44) by v2
i and integrating the resulting

equations, i.e.

∂

∂t

∫

v2

i P (v)dNv =

∫

v2

i

(

N
∑

i=1

L2

i,i+1P (v)

)

dNv

+

∫

v2

i

(

∂1(v1P (v)) + TL∂
2

1P (v)
)

dNv

+

∫

v2

i

(

∂N (vNP (v)) + TR∂
2

NP (v)
)

dNv (46)

by using repeatedly integration by parts (with vi∂i = ∂ivi − 1) we obtain

d

dt
< v2

1 > = −4 < v2

1 > +2 < v2

2 > +2TL

d

dt
< v2

i > = 2 < v2

i−1 > −4 < v2

i > +2 < v2

i+1 > for i = 2, . . . , N − 1

d

dt
< v2

N > = −4 < v2

N > +2 < v2

N−1 > +2TR (47)

In the stationary state d
dt
< v2

i >= 0 so that the temperature profile is obtained as the

solution on a linear system of equations. The solution is:

Ti = TL +
(TR − TL)

N + 1
i (48)

In the stationary state there is a net heat current J flowing through the lattice. This can

be calculated by directly measuring the energy exchange with the two baths. The energy

flux from the left reservoir to the first particle is

< J1 > = < v2

1 > − TL (49)

while the energy flux from the last particle to the right reservoir is

< JN > = < v2

N > − TR (50)

In both cases, by using (48) we obtain

< J1 > = < JN > = J =
(TR − TL)

N + 1
(51)

22



Putting together (48) and (51) we find that Fourier law holds for the stochastic model

with a heat conductivity k = 1.

5.3 The stationary measure

We show here that the stationary measure in the presence of heat flow cannot be of either

Gaussian or product form. First of all, the evolution operator is invariant with respect

to change in sign of any single velocity, and hence P (v1 . . . vN) = P (T1, ..., TN), i.e. the

velocities only appear as even powers.

Proposing a Gaussian measure of the form:

P (v1 . . . vN) ∼ e−
1

2

∑

ij Aijvivj (52)

substituting into (44), we get:
[

∑

ij

Aijvivj

]2

=

[

∑

ij

A2

ijvivj

]

(
∑

v2

i ) ∀v ∈ R
N (53)

Going to the diagonal basis A = Aiδij, this equation implies (Ai − Al)
2 = 0, i.e., A is

proportional to the identity. This is impossible if there is heat flow.

Let us see that a product measure:

P (v1 . . . vN) =

N
∏

i=1

pi(vi) (54)

is in general not possible if there is heat flow. In the stationary state we have

LFPP

P
=

N
∑

i=1

L2
i,i+1pi(vi)pi+1(vi+1)

pi(vi)pi+1(vi+1)
= 0 (55)

Because of their different arguments, each term must vanish separately, thus:

(L2

i−1,i + L2

i,i+1)pi−1(vi−1)pi(vi)pi+1(vi+1) = 0 (56)

This is an equation of the form (L2
x +L2

y)ψ = 0 (with Lx, Ly the SU(2) operators), which

can only be satisfied by the quantum numbers (l,m) = (00), the spherically symmetric

function. In our case this means that:

p1(x)p2(y)p3(z) = g(x2 + y2 + z2) (57)
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which is a product only if we have an isotropic Gaussian, again impossible in the presence

of heat flow.

The equation of motion for n-point correlation functions of these models are linear and

close within themselves. This is a strong suggestion that the models may be integrable,

but we shall not persue this line here.

6 Conclusions

We have studied a family of models of heat transport whose high energy limit is ana-

lytically solvable. The intermediate energies are easy to simulate, the approach to the

asymptotic value can be easily tested. The momentum-conserving version of the model

has finite conductivity, providing further confirmation of the fact that in itself momentum

conservation does not imply anomalous conductivity.

It would be nice in the future to investigate in the simple framework of “magnetic

kicks” we have introduced a system which has also a potential energy. For example one

could start from a system of coupled linear oscillators, establishing a connection with the

work of Olla [40].

Another interesting problem is to solve the Fokker-Planck equation to find the sta-

tionary distribution of our system. This could shead some light also on the stochastic

model introduced by Presutti et al. [30]. There again the stationary measure is a product

measure only locally (i.e. in the approximation to first order in L−1).
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