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Abstract

If the variance of a Gaussian spin-glass Hamiltonian grows like the volume the model

fulfills the Ghirlanda-Guerra identities in terms of the normalized Hamiltonian co-

variance.
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1 Introduction

In the last decade new ideas and technical methods have been developed in the attempt to

build the spin glass theory on rigorous mathematical grounds. The most recent example is

the interpolation strategy [GT] introduced to prove the existence of the thermodynamic

limit in the Sherrington-Kirkpatrick [SK] model and its use in the proof of the Parisi

free energy [MPV] of the same model [G1, T1] and in the identification of an extended

variational principle [AiSS].

The first basic contribution in the field came with the work by Guerra [G2] on how

to prove some correlation identities of the Sherrington-Kirkpatrick model that were only

assumed within the ultrametric structure of the Parisi solution. Those identities were

later generalized by Ghirlanda-Guerra [GG] and are playing an increasingly important

role in the mathematical approach to the low temperature spin glass phase (see [B, T2]

and references therein). The Ghirlanda-Guerra identities are consequence of a very ba-

sic principle of statistical mechanics i.e. the vanishing of the fluctuation of the energy

per particle: at increasing volumes the energy per particle approaches a constant with

respect to the equilibrium measure. Within the non-disordered classical cases all that

simply implies the finiteness of the specific heat almost everywhere in the temperature

(see nevertheless the implications in classical mean-field models [CGI]); however in the

spin glass cases, where the equilibrium quenched state is a properly intertwined composi-

tion of the Boltzmann-Gibbs and the disorder measures, its consequences are way more

subtle. The work [G2] led to the identification of the stochastic stability [AC], an invari-

ance property of the quenched state under a class of suitable perturbations. Subsequently

stochastic stability was developed and used clarify the relation between the equilibrium

and the off-equilibrium properties in the spin glass phase [FMPP1, FMPP2]. Recently

stochastic stability has been classified [C, BCK] and placed on rigorous grounds in [CGi],

where its relation with the mentioned identities is also discussed.

In this work we obtain a condition that guarantee the validity of the Ghirlanda-Guerra

identities: our result states that they hold true whenever the variance of the Hamiltonian

function grows like the volume. Such a condition is the same that ensure the existence
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(boundedness) of the thermodynamic limit [CG] and applies to every spin glass model

studied so far: to the Edwards-Anderson model, to the finite dimensional cases with

summable or non-summable interactions in the sense of Kanin and Sinai [KS], to the mean

field cases like SK, p-spin, REM and GREM, up to the general spin glass model of subset

interaction on which our general condition has been tailored. It is important to stress that

the identities we prove hold in terms of the normalized Hamiltonian covariance which has

a different spin expression in each model: for instance in the SK model it coincides with

the square power of the overlap function, while for the EA model it is the link overlap

[C2, NS]. The strategy we use to achieve the result relies on very simple methods like the

bound on martingale sums and classical inequalities.

The paper is organized in definitions (Sec. 2), results (Sec. 3), proofs (Sec. 4) and is

concluded with some comments and perspectives (Sec. 5).

2 Definitions

We consider a disordered model of Ising configurations σn = ±1, n ∈ Λ ⊂ Z
d for some d-

parallelepiped Λ of volume |Λ|. We denote ΣΛ the set of all σ = {σn}n∈Λ, and |ΣΛ| = 2|Λ|.

In the sequel the following definitions will be used.

1. Hamiltonian.

For every Λ ⊂ Z
d let {HΛ(σ)}σ∈ΣN

be a family of 2|Λ| translation invariant (in

distribution) centered Gaussian random variables defined, in analogy with [RU],

according to the very general representation

HΛ(σ) = −
∑

X⊂Λ

JXσX (2.1)

where

σX =
∏

i∈X

σi , (2.2)

(σ∅ = 0) and the J ’s are independent Gaussian variables with zero mean

Av(JX) = 0 , (2.3)
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and (translation invariant) variance

Av(J2
X) = ∆2

X . (2.4)

2. Covariance matrix.

CΛ(σ, τ) := Av (HΛ(σ)HΛ(τ)) =
∑

X⊂Λ

∆2
XσXτX . (2.5)

By the Schwartz inequality

|CΛ(σ, τ)| ≤
√
CΛ(σ, σ)

√
CΛ(τ, τ) =

∑

X⊂Λ

∆2
X (2.6)

for all σ and τ .

3. Thermodynamic Stability.

The Hamiltonian (2.1) is thermodynamically stable if it exist a constant c̄ <∞ such

that

sup
Λ⊂Zd

1

|Λ|CΛ(σ, σ) = sup
Λ⊂Zd

1

|Λ|
∑

X⊂Λ

∆2
X ≤ c̄ <∞ (2.7)

Together with translation invariance a condition like the (2.7) is equivalent to

∑

X∋0

∆2
X

|X| ≤ c̄ . (2.8)

In fact
∑

X⊂Λ

∆2
X =

∑

x∈Λ

∑

X∋x

∆2
X

|X| = |Λ|
∑

X∋0

∆2
X

|X| . (2.9)

Alternatively, summing over the equivalence classes X̃ of the translation group, the

(2.7) is equivalent to
∑

X̃

∆2
X̃

≤ c̄ . (2.10)

Thanks to the (2.6) a thermodynamically stable model fulfills the bound

CΛ(σ, τ) ≤ c̄ |Λ| (2.11)

and has a order 1 normalized covariance

cΛ(σ, τ) :=
1

|Λ|CΛ(σ, τ) (2.12)
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4. Random partition function.

Z(β) :=
∑

σ∈ΣΛ

e−βHΛ(σ) . (2.13)

5. Random free energy.

−βF(β) := A(β) := lnZ(β) . (2.14)

6. Random internal energy.

U(β) :=

∑
σ∈ΣΛ

HΛ(σ)e−βHΛ(σ)

∑
σ∈ΣΛ

e−βHΛ(σ)
. (2.15)

7. Quenched free energy.

−βF (β) := A(β) := Av (A(β)) . (2.16)

8. R-product random Gibbs-Boltzmann state.

Ω(−) :=
∑

σ(1) ,...,σ(R)

(−)
e−β[HΛ(σ(1))+···+HΛ(σ(R))]

[Z(β)]R
. (2.17)

9. Quenched equilibrium state.

< − > := Av (Ω(−)) . (2.18)

10. Observables.

For any smooth bounded function G(cΛ) (without loss of generality we consider

|G| ≤ 1 and no assumption of permutation invariance on G is made) of the covari-

ance matrix entries we introduce the random (with respect to < − >) R×R matrix

of elements {qk,l} (called generalized overlap) by the formula

< G(q) > := Av (Ω(G(cΛ))) . (2.19)

E.g.: G(cΛ) = cΛ(σ(1), σ(2))cΛ(σ(2), σ(3))

< q1,2q2,3 > = Av

(∑
σ(1) ,σ(2),σ(3) cΛ(σ(1), σ(2))cΛ(σ(2), σ(3)) e−β[

∑3
i=1 HΛ( σ(i))]

[Z(β)]3

)

(2.20)
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3 Results

The Ghirlanda-Guerra identities admit several equivalent formulations. They can be ex-

pressed in terms of factorization properties of the quenched distribution of the generalized

overlap [GG, B, T2] as well as in terms of expectations of observables. In this work we

chose the second approach because it allows to distinguish the identities in two classes

with different physical meaning: the first expresses the regularity with respect to the

temperature, the second the self-averaging of intensive quantities.

In relation to the definitions of the previous section it holds the following:

Theorem 1 The quenched equilibrium state of a thermodynamically stable Hamiltonian

fulfills, for every observable G and every temperature interval [β2
1 , β

2
2 ] the following iden-

tities in the thermodynamic limit

∫ β2
2

β2
1

<
R∑

k,l=1

k 6=l

Gq l, k − 2RG
R∑

l=1

q l, R+1 +R(R + 1)GqR+1, R+2 > dβ2 = 0 (3.21)

∫ β2
2

β2
1

[
R∑

k=1

< Gq k,R+1 > −(R + 1) < GqR+1, R+2 > + < G >< q1,2 >

]
dβ2 = 0 (3.22)

Remark 1 The two previous relations when applied to G(q) = q1,2 combined together lead

to the well known [MPV, G2]:

< q1,2q2,3 > =
1

2
< q2 > +

1

2
< q >2 (3.23)

< q1,2q3,4 > =
1

3
< q2 > +

2

3
< q >2 (3.24)

Remark 2 It is straightforward to verify that the condition (2.7) of thermodynamic sta-

bility holds for all the known spin glass models. Here are a few examples:

1. The Edwards-Anderson model [EA]. The nearest neighbor case is defined by ∆2
X = 1

if X = (n, n′) and |n− n′| = 1. The condition (2.7) is verified by c̄ = d.
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2. More generally one consider still a two body interaction with ∆2
X = |n−n′|−2dα. The

regime α > 1 comes from a summable interaction. The condition (2.7) is verified

by c̄ = (2α− 1)−d for all α > 1/2 thus including also the non summable case [KS].

3. The SK model [SK]. Although it is not a finite dimensional model it may still be

embedded in Z, with ∆2
X = 0 unless |X| = 2 and ∆i,j = N−1 with N = |Λ|. It

obviously fulfills condition (2.7) with c̄ = 1.

4. The p-spin. Analogously as above ∆X = 0 if |X| 6= p and ∆2
X = 1/Np otherwise. It

is thermodynamically stable with c̄ = 1

5. The REM [D] and GREM [DG] models. Although they have not been defined as

spin models their discrete nature allows to associate to them a spin Hamiltonian.

For instance it is easy to prove that the REM is represented by by the Hamilto-

nian (2.1) with ∆2
X = N 2−N which satisfies the condition (2.7) with c̄ = 1, see

also [B]. The same argument holds for the GREM [CDGG, CG2] which is again

thermodynamically stable with c̄ = 1.

Remark 3 The relevance of the identities is evident considering that they reduce the

degrees of freedom a priori carried by each spin glass model. In the mean field case

for instance the method led to the rigorous proof of a property called replica equivalence

[Pa, C2] which can viewed as an ansatz generalizing the ultrametric one. The purely

ultrametric identities (still lacking a rigorous mathematical derivation) which are built in

the Parisi solution of the SK model are not contained in the Ghirlanda-Guerra ones.

Remark 4 It would be interesting to establish, or disprove, the same identities in a

stronger sense, i.e. everywhere in the temperature. One of the limit of the method used to

achieve our results is that it is intrinsically restricted to hold in β-average, i.e. in every

interval excluding at most isolated singularities. It is still an open question if, in the spin

glass phase, there are similar singularities or if the identities hold just everywhere. The

only existing results are evidences of numerical nature of the validity of those identities

everywhere [MPRRZ, CGi2].
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4 Proof

The statements (3.21) and (3.22) are proved respectively in the lemmata of subsections 4.1

and 4.2. The proof uses only elementary methods like martingale differences and classical

inequalities. Let h(σ) = |Λ|−1HΛ(σ) be the Hamiltonian per particle. We consider the

quantity
R∑

l=1

{
< h(σ(l)) G > − < h(σ(l)) >< G >

}
= ∆1G+ ∆2G (4.25)

where

∆1G =

R∑

l=1

{
Av
(
Ω[h(σ(l))G] − Ω[h(σ(l))]Ω[G])

)}
(4.26)

∆2G =
R∑

l=1

{
Av
(
Ω[h(σ(l))]Ω[G]

)
− Av

(
Ω[h(σ(l))]

)
Av (Ω[G])

}
(4.27)

4.1 Stochastic Stability Bounds, vanishing of ∆1G

We follow the method of stochastic stability as developed in [CGi].

Lemma 4.1 For every bounded observable G, see definition (10), we have that for every

interval [β1, β2] in the thermodynamic limit
∫ β2

β1

∆1G dβ = 0 (4.28)

Proof. We observe that deriving < G > with respect to the temperature

−∂ < G >

∂β
= |Λ|

R∑

l=1

{
Av
(
Ω[h(σ(l))G] − Ω[h(σ(l))]Ω[G])

)}
(4.29)

Integrating in dβ we obtain thanks to (4.26)
∫ β2

β1

∆1G dβ =
< G > (β2) − < G > (β1)

|Λ| (4.30)

Remembering the assumption on boundedness of function G this proves the lemma. �

Remark 5 The previous lemma is related to a general property of disordered systems

which is known as stochastic stability (see [AC, CGi]). It says that the equilibrium state

in a spin glass model is invariant under a suitable class of perturbation in all temperature

intervals of continuity.
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Lemma 4.2 The following expression holds:

∆1G = −β < G




R∑

k,l=1

k 6=l

q l, k − 2R

R∑

l=1

q l, R+1 +R(R + 1) qR+1, R+2


 > . (4.31)

Proof.

For each replica l (1 ≤ l ≤ R), we evaluate separately the two terms in the right side

of Eq. (4.26) by using the integration by parts (generalized Wick formula) for correlated

Gaussian random variables, x1, x2, . . . , xn

Av (xi ψ(x1, ..., xn)) =
n∑

j=1

Av (xixj) Av

(
∂ψ(x1, ..., xn)

∂xj

)
. (4.32)

It is convenient to denote by p (R) the Gibbs-Boltzmann weight of R copies of the deformed

system

p (R) =
e−β [

∑
R

k=1 HΛ(σ(k)) ]

[Z(β)]R
, (4.33)

so that we have

− 1

β

dp (R)

dHΛ(τ)
= p (R)

(
R∑

k=1

δσ(k), τ

)
−R p (R)

e−β[HΛ(τ)]

[Z(β)]
. (4.34)

We obtain

Av
(
Ω(h(σ(l))G)

)
=

1

|Λ| Av




∑

σ(1) ,...,σ(r)

G HΛ(σ(l)) p (R)



 (4.35)

= Av




∑

σ(1),...,σ(r)

∑

τ

G cΛ(σ(l), τ)
dp (R)

dHΛ(τ)



 (4.36)

= −β
[

R∑

k=1

< Gq l, k > −R < Gq l,R+1 >

]
(4.37)

where in (4.36) we made use of the integration by parts formula and (4.37) is obtained

by (4.34). Analogously, the other term reads

Av
(
Ω(h(σ(l))) Ω(G)

)
=

1

|Λ| Av




∑

σ(l)

∑

τ (1),...,τ (R)

G HΛ(σ(l)) p (R + 1)



 (4.38)
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= Av



∑

σ(l)

∑

τ (1),...,τ (R)

∑

γ

G cΛ(σ(l), γ)
dp (R + 1)

dHΛ(γ)


 (4.39)

= −β
[

R+1∑

k=1

< Gq k, R+1 > −(R + 1) < GqR+1, R+2 >

]

(4.40)

Inserting the (4.37) and (4.40) in Eq. (4.26) we finally obtain the expression (4.31). �

4.2 Martingale Bounds, vanishing of ∆2G

The method of the martingale differences to prove the self averaging of the free energy, or

in general to bound the fluctuations of extensive quantity, has been applied in the context

of spin glasses in [PS] for the SK case and in [WA] in the case of finite dimensional models.

Our formulation applies to both cases and extends the previous results. For instance our

method includes the non summable interactions in finite dimensions [KS] and the p-spin

mean field model as well as the REM [D] and GREM [DG] models.

Lemma 4.3 The free energy is a self averaging quantity, i.e. it exist a positive function

c(β) such that

V (A) = Av
(
A2
)
− Av (A)2 ≤ c(β)|Λ| (4.41)

Proof. For an assigned volume Λ we enumerate by the index k the interacting subsets

X from 1 to NΛ and considering the random partition function (2.13) we define

Ak = Av≤k lnZ(β) , (4.42)

where the symbol Av≤k denotes the Gaussian integration performed only on the first k

random variables JX . Clearly A0 = A(β) and ANΛ
= A(β). Introducing the quantity

Ψk = Ak − Ak+1 , (4.43)

it holds

A− Av (A) =

NΛ−1∑

k=0

Ψk (4.44)
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and

V (A) =
∑

k

Av
(
Ψ2

k

)
+ 2

∑

k>k′

Av (ΨkΨk′) . (4.45)

First we observe that the second sum is zero, being zero each of its terms. In fact

Av (ΨkΨk′) = Av (Av≤k(ΨkΨk′)) = Av (ΨkAv≤k(Ψk′)) (4.46)

and

Av≤k(Ψk′) = Av≤k(Ak′ −Ak′+1) = 0 (4.47)

thanks to the property

Av≤k(Ak′) = Ak ∀ k ≥ k′ . (4.48)

We introduce now the interpolated Hamiltonian

H
(t)
Λ (σ) = −

NΛ∑

l=1

Jltlσl (4.49)

with

tl =





t, if l = k + 1,

1, otherwise ,
(4.50)

and define the quantity

Ak(t) = Av≤k ln
∑

σ∈ΣΛ

e−βH
(t)
Λ (σ) . (4.51)

By the fundamental theorem of calculus

Ak = Ak(0) +Bk (4.52)

with

Bk =

∫ 1

0

dAk(t)

dt
dt = β

∫ 1

0

Av≤k ωt(Jk+1σk+1) . (4.53)

We observe

Av
(
Ψ2

k

)
= Av

(
[Ak −Ak+1]

2
)

= Av
(
Avk+1[Ak − Avk+1Ak]

2
)

(4.54)

= Av
(
Avk+1(A

2
k) − [Avk+1(Ak)]

2
)
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Since Ak and Bk differ by a constant with respect to Avk+1 (integration with respect to

the (k + 1)-th Gaussian) we have that their variance is the same:

Av
(
Ψ2

k

)
= Av

(
Avk+1(A

2
k) − [Avk+1(Ak)]

2
)

= Av
(
Avk+1(B

2
k) − [Avk+1(Bk)]

2
)
.

(4.55)

We will estimate separately the two terms Av (Avk+1(B
2
k)) and Av ([Avk+1(Bk)]

2). By a

simple integration by parts (4.32) on Jk+1 we obtain

Avk+1(Bk) = β2∆2
k+1

∫ 1

0

Av≤k+1 [1 − ω2
t (σk+1)]tdt ≤ 1

2
β2∆2

k+1 (4.56)

which implies

0 ≤ Av
(
[Avk+1(Bk)]

2
)

≤ 1

4
β4∆4

k+1 . (4.57)

Analogously we have

Avk+1(B
2
k) = Avk+1

∫ 1

0

∫ 1

0

Av≤k(ωt(Jk+1σk+1))Av≤k(ωs(Jk+1σk+1))stdsdt (4.58)

Applying twice the integration by parts (4.32) we get

Avk+1(B
2
k) = β2∆2

k+1Avk+1

∫ 1

0

∫ 1

0

Av≤k(ωt(σk+1))Av≤k(ωs(σk+1))stdsdt+ (4.59)

− 2β4∆4
k+1Avk+1

∫ 1

0

∫ 1

0

Av≤k(ωt(σk+1)[1 − ω2
t (σk+1)])Av≤k(ωs(σk+1))st

3dsdt+

− 2β4∆4
k+1Avk+1

∫ 1

0

∫ 1

0

Av≤k(ωs(σk+1)[1 − ω2
s(σk+1)])Av≤k(ωt(σk+1))s

3tdsdt+

+ 2β4∆4
k+1Avk+1

∫ 1

0

∫ 1

0

Av≤k[1 − ω2
s(σk+1)]Av≤k[1 − ω2

s(σk+1)]s
2t2dsdt

≤ 1

4
β2∆2

k+1 +
13

18
β4∆4

k+1

Putting together the (4.57) and the (4.59) we find

Av
(
Ψ2

k

)
≤ 1

4
β2∆2

k+1 +
35

36
β4∆4

k+1 (4.60)

V (A) =
∑

k

Av
(
Ψ2

k

)
≤
∑

X⊂Λ

1

4
β2∆2

X +
35

36
β4∆4

X . (4.61)

By the assumption of thermodynamic stability with the formulation (2.10) and using the

inequality
∑

X̃ ∆4
X̃
≤ (
∑

X̃ ∆2
X̃

)2 we obtain

V (A) ≤ |Λ|(1
4
β2c̄+

35

36
β4c̄2) (4.62)
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which fulfills (4.41) with c(β) = 1
4
β2c̄+ 35

36
β4c̄2. �

Lemma 4.4 The internal energy is self averaging almost everywhere β, i.e. defining

u = U/|Λ| and V (u) = Av (u2) − Av (u)2 it holds in the thermodynamic limit
∫ β2

β1

V (u) dβ → 0 (4.63)

Proof.

The result is obtained in two steps which use general theorems of measure theory. First

from lemma 4.3 we obtain the convergence to zero almost everywhere (in β) of the variance

of the internal energy, then thanks to a bound on the variance of the internal energy we

apply the Lebesgue dominated convergence theorem which gives the lemma statement.

The sequence of convex functions A(β)/|Λ| converges a.e. (in J) to the limiting value

a(β) of its average [GT, CG] and the convergence is self averaging in the sense of lemma

4.3. By general convexity arguments [RU] it follows that the sequence of the derivatives

A′(β)/|Λ| converges to u(β) = a′(β) almost everywhere in β and also that the convergence

is self averaging. In fact the vanishing of the variance of a sequence of convex functions

is inherited, in all points in which the derivative exists (which is almost everywhere for a

convex function), to the sequence of its derivatives (see [S, OTW]). From lemma 4.3 we

have then

V (u) → 0 β − a.e. (4.64)

In order to obtain the convergence in β-average we use the Lebesgue dominated con-

vergence theorem. In fact we prove that the sequence of variances of u is uniformly

bounded (in every interval [β1, β2]) by an integrable function of β. A lengthy but simple

computation which uses again integration by parts gives

Av (U) = Av

(
∑

X⊂Λ

JXω(σX)

)
=
∑

X⊂Λ

β∆2
X [1 − Av

(
ω2(σX)

)
] ≤ β|Λ|c̄ (4.65)

Av
(
U2
)

= Av

(
∑

X,Y ⊂Λ

JXJY ω(σX)ω(σY )

)
= (4.66)

=
∑

X,Y ⊂Λ

β2∆2
X∆2

Y Av
[
1 − ω2(σX) − ω2(σY ) + 6ω2(σX)ω2(σY )+

− 6ω(σX)ω(σY )ω(σXσY ) + ω2(σXσY )
]
≤ 14β2|Λ|2c̄2 (4.67)
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from which

V (u) ≤ 15β2c̄2 . (4.68)

From this follows (4.63). �

Lemma 4.5 For every bounded observable G, see definition (10), we have that for every

interval [β1, β2] in the thermodynamic limit

∫ β2

β1

∆2Gdβ = 0 (4.69)

Proof.

Thanks to the Schwartz inequality

∆2G = Av (uG− Av (u)Av (G)) = Av ([u− Av (u)] [G− Av (G)]) = (4.70)

≤
√

Av
(
[u− Av (u)]2

)√
Av
(
[G− Av (G)]2

)
≤

√
2
√
V (u)

(∆2G)2 ≤ 2V (u) (4.71)

∣∣∣∣
∫ β2

β1

∆2Gdβ

∣∣∣∣ ≤
√∫ β2

β1

(∆2G)2dβ
√
β2 − β1 ≤

√
2(β2 − β1)

√∫ β2

β1

V (u)dβ → 0

(4.72)

�

Lemma 4.6 The following expression holds:

∆2G = −β R
[

R∑

k=1

< Gq l, R+1 > −(R + 1) < GqR+1, R+2 > + < G >< q1,2 >

]
.

(4.73)

Proof. In order to obtain the ∆2G we are left with the explicit evaluation of the other

term in (4.27) which simply gives

Av
(
Ω(h(σ(l)))

)
Av (Ω(G)) =

1

|Λ| Av

(
∑

σ(l)

HΛ(σ(l)) pΛ (1)

)
< G >

= Av

(
∑

σ(l)

∑

γ

cΛ(σ(l), γ)
dpΛ (1)

dHΛ(γ)

)
< G >

= −β < G > [< q1,1 > − < q1,2 >] (4.74)
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Inserting the (4.40) and (4.74) in Eq. (4.27) we obtain the (4.73). �
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