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Abstract

We perform a numerical simulation (parallel tempering) to study the rel-
ative fluctuations of the link overlap and the square standard overlap in
the three dimensional Gaussian Edwards-Anderson model with zero exter-
nal field. We first analyze the correlation coefficient and find that the two
quantities are uncorrelated above the critical temperature. Below the criti-
cal temperature we find that the link overlap has vanishing fluctuations for
fixed values of the square standard overlap and large volumes. We identify
the functional relation among the two using the method of the least squares
which turn out to be a monotonically increasing function and we approxi-
mate it up to the third order. Our results show that the two overlaps are
completely equivalent in the description of the low temperature phase of
the Edwards-Anderson model and by consequence the TNT picture should
be rejected.
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1 Introduction

The low temperature phase of short-range spin-glasses is among the most
unsettled problems in condensed matter physics [1, 2]. To detect its nature
it was originally proposed an order parameter by Edwards and Anderson
[3], the disorder average of the local squared magnetization

qEA = Av(ω2
i ) = Av

(

[∑

σ σie
−βHσ

∑

σ e−βHσ

]2
)

(1.1)

which coincides with the quenched expectation of the local standard overlap
of two spin configurations drawn according to two copies of the equilibrium
state carrying identical disorder

Av(ω2
i ) =< qi >= Av

(

∑

σ,τ σiτi e−β(Hσ+Hτ )

∑

σ,τ e−β(Hσ+Hτ )

)

(1.2)

The previous parameter should reveal the presence of frozen spins in random
directions at low temperatures. While that choice of the local observable
is quite natural it is far to be unique; one can consider for instance the
two point function Av(ω2

ij). In the case of nearest neighbour correlation
function this yields to the quenched average of the local link overlap.
When summed over the whole volume link overlap and standard overlap
give rise to a priori different global order parameters. In the mean field
case the two have a very simple relation: in the Sherrington-Kirkpatrick
(SK) model for instance it turns out that the link overlap coincides with
the square power of the standard overlap up to thermodynamically irrel-
evant terms. But in general, especially in the finite dimensional case of
nearest neighbor interaction like the Edwards-Anderson (EA) model, the
two previous quantities have a different behavior with respect to spin flips:
when summed over regions the first undergoes changes of volume sizes after
spin-flips, while the second is affected only by surface terms.
¿From the mathematical point of view their role is also quite different.
The square of the standard overlap represents in fact the covariance of the
Hamiltonian function for the SK model, while the link overlap is the co-
variance for the EA model. Two different overlap definitions are naturally
related to two different notions of distance among spin configurations. It
is an interesting question to establish if two distances are equivalent for
the equilibrium measure in the large volume limit and if yes to what ex-
tent (see [4] for a broad discussion on overlap equivalence and its relation
with ultrametricity). They could in fact be simply equivalent in preserving
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L Therm Equil Nreal nβ δT Tmin Tmax

3 − 6 50000 50000 2048 19 0.1 0.5 2.3
8 50000 50000 2680 19 0.1 0.5 2.3
10 70000 70000 2048 37 0.05 0.5 2.3
12 70000 70000 2048 37 0.05 0.5 2.3

Table 1: Parameters of the simulations: system size, number of sweeps used
for thermalization, number of sweeps for measurement of the observables,
number of disorder realizations, number of temperature values allowed in
the PT procedure, temperature increment, minimum and maximum tem-
perature values.

neighborhoods (topological equivalence) or they could preserve order among
distances (metric equivalence).
In this paper we consider the EA model in d=3, with Gaussian couplings
and zero external magnetic field in periodic boundary conditions. We study
the relative fluctuations of the link overlap with respect to the square of
standard overlap. We use the parallel tempering algorithm (PT) to inves-
tigate lattice sizes from L = 3 to L = 12. For every size we simulate at
least 2048 disorder realizations. For the larger sizes we used 37 temperature
values in the range 0.5 ≤ T ≤ 2.3. The thermalization in the PT procedure
is tested by checking the symmetry of the probability distribution for the
standard overlap q (see Sec. 2) under the transformation q → −q. More-
over for the Gaussian coupling case it is available another thermalization
test: the internal energy can be calculated both as the temporal mean of
the Hamiltonian and - by exploiting integration by parts - as expectation
of a simple function of the link overlap [5]. We checked that with our ther-
malization steps both measurements converge to the same value. All the
parameters used in the simulations are reported in Tab.1.

2 Definitions

We recall the basic definitions. For a 3-dimensional lattice Λ of volume
N = L3, the square of the standard overlap among two spin configurations
σ, τ ∈ {+1,−1}N is

q2(σ, τ) =

(

1

N

∑

i

σiτi

)2

(2.3)
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The link overlap is instead obtained from the nearest neighbor spins, namely
for b = (i, j) with i, j ∈ Λ, |i − j| = 1 and σb = σiσj

Q(σ, τ) =
1

3N

∑

b

σbτb (2.4)

Firs we investigate the behavior of the correlation coefficient between q2

and Q

ρ(q2, Q) =
< (q2− < q2 >)(Q− < Q >) >

√

< (q2− < q2 >)2 >< (Q− < Q >)2 >
(2.5)

This quantity will tell us in which range of temperatures the two random
variables are correlated. In that range we further investigate the nature
of the mutual correlation by studying their joint distribution and, in par-
ticular, the conditional distribution for instance of Q at fixed values of q2.
We are interested in understanding if a functional relation among the two
quantities exists i.e. if the variance of the conditional distribution shrink
to zero at large volumes and around what curve Q = G(q2) the conditional
distribution is peaked.
Namely:

P (Q|q2) =
P (Q, q2)

P (q2)
=

Av
(∑

σ,τ δ(Q−Qσ,τ )δ(q2
−q2

σ,τ)e−β[Hσ+Hτ ]

∑

σ,τ e−β[Hσ+Hτ ]

)

Av
(∑

σ,τ δ(q2
−q2

σ,τ )e−β[Hσ+Hτ ]

∑

σ,τ e−β[Hσ+Hτ ]

) (2.6)

For this conditional distribution we compute the mean and the variance:

G(q2) =< Q|q2 >=
Av

∑

σ,τ Qσ,τδ(q2
−q2

σ,τ)e−β[Hσ+Hτ ]

∑

σ,τ e−β[Hσ+Hτ ]

Av
∑

σ,τ δ(q2
−q2

σ,τ)e−β[Hσ+Hτ ]

∑

σ,τ e−β[Hσ+Hτ ]

(2.7)

< Q2|q2 >=
Av

∑

σ,τ Q2
σ,τδ(q2

−q2
σ,τ)e−β[Hσ+Hτ ]

∑

σ,τ e−β[Hσ+Hτ ]

Av
∑

σ,τ δ(q2
−q2

σ,τ )e−β[Hσ+Hτ ]

∑

σ,τ e−β[Hσ+Hτ ]

(2.8)

V ar(Q|q2) =< Q2|q2 > − < Q|q2 >2 (2.9)

The method of the least squares immediately entails that G(q2) is the
best estimator for the functional dependence of Q in terms of q2. In fact,
given any function g(q2), the mean of (Q − g(q2))2 according to the joint
distribution P (Q, q2) is

∑

i,j(Qi − g(q2
j ))

2P (Qi, q
2
j ) =

∑

j P (q2
j )
∑

i(Qi −

g(q2
j ))

2P (Qi|q
2
j ), where the sums run over all possible values of the random
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variables Q,q2, which are finitely many on the finite system we simulated.
Therefore, to minimize the mean it suffices to minimize the inner sum, i.e.
to choose g(q2) as the mean G(q2) of Q with respect to the conditional dis-
tribution (2.6). The variance, on the other hand, measures how precise it
is the estimate.

3 Results

Fig. (1) shows the correlation between the square standard overlap and the
link overlap. The plot of Eq.(2.5) is done for different sizes of the system
as a function of the temperature.
For a given temperature, we did a fit of the data to the infinite volume
limit. For every temperature value there is monotonicity in the system
size L, even if in the low temperature region T ≤ 1.0 the data are very
slowly decreasing as the system size increases. We tried different scaling
for the data, both exponential ρL(T ) = ρ

∞
(T ) + a(T )eb(T )L and power law

ρL(T ) = ρ
∞

(T )+α(T )Lβ(T ). The interesting information is contained in the
asymptotic value ρ

∞
(T ). We measured the χ2 for different values of ρ

∞
(T )

in the range [0, minL ρL(T )] and keeping a(T ) and b(T ) (or α(T ) and β(T ))
as free parameters. In the region T ∈ [1.8, 2.3] both the exponential and
power law follows the data in a qualitative way. They have the minimum
value of the normalized χ2 for ρ

∞
(T ) = 0. The power law fit seems to

work better, for example at T = 2.0 we found χ2
exp is O(10−2) and χ2

power is
O(10−4). In the range T ∈ [1.1, 1.7] the two fit have a minimum χ2 again
at ρ

∞
(T ) = 0, but the exponential fit is preferable because it has a smaller

χ2 and better confidence intervals. Finally for T ≤ 1.0 the χ2 develops a
sharp minimum corresponding to values ρ

∞
(T ) 6= 0 and the exponential fit

performs better than the power law fit, which actually is not even able to
reproduce the behaviour of the data. The whole plot of the curve ρ

∞
(T ) as

obtained from the best fit is represented in Fig. (2).
In the high temperature phase the two random variables are asymptotically
uncorrelated while in the low temperature one they display a non-vanishing
correlation which suggests further investigation concerning the functional
relation among them. Within our available temperature values the temper-
ature at which the correlation coefficient starts to be different from zero is
in good agreement with the estimated critical value of the model Tc ∼ 1.
We consider then the problem of studying the functional dependence (if any)
between the two random variables Q and q2 in the low temperature region.
The points in the Fig. (3) show the function G(q2) of Eq.(2.7) for different
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system sizes at T = 0.5. Also we studied a third order approximation
of the form Q = g(q2) = a + bq2 + cq4 + dq6. Since we must have Q =
1 for q2 = 1, this actually implies d = 1 − a − b − c. The coefficients
aL,T , bL,T , cL,T have been obtained by the least square method and then
fitted to the infinite volume limit. The result is shown as continuous lines
in Fig (3). The good superposition of the curves to the data for G(q2)
indicates that the functional dependence between the two overlaps is well
approximated already at the third order.
Finally Fig (4) shows the normalized variance at low temperature for dif-
ferent sizes of the system. It shows that the distribution is concentrating
for large volumes around its mean value. The trend toward a vanishing
variance for infinite system sizes is very clear. The best fit (in terms of the
χ2) of the data is obtained by a power law of the form aL−b + c and it gives
c = 0 for every value of q2. We also investigated how the non-normalized
variance scales to zero and found that the coefficient b stays in the range
[1.4,1.6] which indicate that the variance could scale to zero as the inverse
power of the square root of the volume.

4 Comments

It is interesting to compare our result with previous work. Marinari and
Parisi [6] have studied the relation Q = (1 − A(L)) + (A(L) − B(L))q2 +
B(L)q4 among the two overlaps at zero temperature, by ground state per-
turbation. We have extrapolated our data in the low temperature regime to
zero temperature by a polynomial fit and then to the infinite volume limit
(L = ∞). The best fit for L = ∞ (i.e. the one with smaller χ2) is quadratic
in L−1. It gives A = 0.30±0.05 (χ2 = 0.21), which is in agreement with the
independent measure of Marinari and Parisi (A = 0.30 ± 0.01, χ2 = 0.6).
Note that their results are obtained with a complete different method than
Montecarlo simulations, namely exact ground states. Sourlas [7] studied the
same problem in a different setting called soft constraint model. Although
a direct quantitative comparison is not possible with our method his results
are qualitatively similar.
In conclusion, our result shows quite clearly that the study of the two order
parameters, the square of the standard overlap and the link overlap, are
equivalent as far as the quenched equilibrium state is concerned. In view
of our result the proposed pictures which assign different behaviour to the
two overlap distributions, in particular the TNT [8] picture, should be re-
jected. It is interesting to point out that since the present analysis deals
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only with the distribution of P (q2, Q) and not with the higher order ones
like for instance P (q2

1,2, q
2
2,3, Q1,2, Q2,3) our results are compatible with dif-

ferent factorization properties of the two overlaps like those illustrated in [9].
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Figure 1: ρ(q2, Q) as a function of the
temperature T for different sizes L of
the system.
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Figure 3: Plot of the curves gL,T (q2)
(continuous lines) and of < Q|q2 >L,T

(dotted lines) together with the infinite
volume limit curve gT (q) (upper contin-
uous line) for T = 0.5.
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