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Ultrametricity in the Edwards-Anderson Model
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We test the property of ultrametricity for the spin glass three-dimensional Edwards-Anderson
model in zero magnetic field with numerical simulations up to 203 spins. We find an excellent
agreement with the prediction of the mean field theory. Since ultrametricity is not compatible with
a trivial structure of the overlap distribution our result contradicts the droplet theory.<O �nax oÝ tä manteØìn âsti tä ân DelfoØoÖte lègei oÖte krÔptei �ll� shma�nei

Heraclitus Fragment 93,

from Plutarch, On the Pythian Oracle, 404E. [1]

Ultrametricity is a widely accepted property of the mean field spin glass theory: it is a crucial ingredient in the field
theoretical computations of the Sherrington-Kirkpatrick model [2, 3, 4] as well as a guiding principle for the rigorous
proof of its free energy density formula [5, 6]. Its relevance in finite dimensional systems is nonetheless still an open
matter, subject of intense investigations and debates in the theoretical and mathematical physics communities.

Ultrametricity states a very striking property for a physical system: essentially it says that the equilibrium configu-
rations of a large system can be classified in a taxonomic (hierarchical) way (as animal in different taxa): configurations
are grouped in states, states are grouped in families, families are grouped in superfamilies. This equilibrium ultra-
metricity has a correspondence in the existence of widely separated time scales in the dynamics, typically of a glassy
system.

It is not clear at the present moment if ultrametricity is present in three dimensional systems; the most studied
case is three dimensional spin glasses where contrasting results have been presented in the literature in the last twenty
years. Part of the difficulties arise from the fact that ultrametricity should be, at the best, exact when the volume of
the system goes to infinity and therefore simulations done on a limited range of volume are difficult to interpret. In
this letter we study systems ranging from 43 to 203 extending of about an order of magnitude the range of volume
used in previous simulations.

From the technical point of view ultrametricity implies that sampling three configurations independently with
respect to their common Boltzmann-Gibbs state and averaging over the disorder, the distribution of the distances
among them is supported, in the limit of very large systems, only on equilateral and isosceles triangles with no scalene
triangles contribution. In a generic situation the relative weight of equilateral and isosceles triangles is arbitrary,
however it is well known in stochastically stable systems: the stochastic stability property was introduced for the
infinite range spin glass model in [7, 8] and later proved also for the realistic short ranged models in finite dimensions
[9, 10].

The property of ultrametricity and the non-trivial structure of the overlap distribution are the characterizing
features of the mean field picture and are mutually intertwined: a trivial (delta-like) overlap probability distribution,
like the one predicted in the droplet theory [11], is not compatible in fact with the previous ultrametric structure
because it predicts only equilateral triangles all of the same side.

In this letter we study the Edwards-Anderson model [12] for the spin glasses in the three-dimensional cubic lattice
with ±J random interactions (for a numerical study in four dimensions see [13]). With a multi-spin coding and a
parallel-tempering algorithm we numerically investigate the distribution of the overlaps: all the parameters used in
the simulations are reported in Tab.I. We have checked the thermalization by verifying that our result would have
been the same (inside our small error bar) by taking simulations a factor 4 shorter.

We find very strong indication in favor of ultrametricity which turns out to be reached at large volumes with exactly
the form predicted by the mean field theory and, by consequence, a robust signal against droplet theory (for a study
of dynamical ultrametricity and for the relation between statics and dynamics in spin glasses see [14, 15]). According
to the literature the system has a transition Tc of 1.15 and our data are compatible with this value. The smallest
temperature we used is 0.7, i.e. about 0.6Tc: although we are relatively far from the critical temperature, we may
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L Sweeps Nreal nβ Tmin Tmax

4 1047552 1280 25 0.7 2.1

6 1047552 1280 25 0.7 2.1

8 1047552 1280 25 0.7 2.1

10 1047552 1280 25 0.7 2.1

12 1047552 896 25 0.7 2.1

16 2096128 1216 25 0.7 2.1

18 2096128 768 49 0.7 2.1

20 4193280 512 103 0.7 2.1

Table I: Parameters of the simulations: system size, number of sweeps, number of disorder realizations, number of temperature
values allowed in the parallel tempering procedure, minimum and maximum temperature values.

still feel some effects coming from the critical region. However we notice that ultrametricity should not be valid at
the critical temperature, consistent with our results, so any finding of ultrametricity at lower temperature cannot be
an artefact.

From a mathematical point of view the triple (c1,2, c2,3, c3,1), with 0 ≤ ci,j ≤ 1, representing the overlaps among
three copies of the system, is called stochastically stable and ultrametric when, defining χ(c) =

∫ c

0 P (c′)dc′, where P (c)
is the probability distribution of c, its joint probability distribution function has the following structure:

P3(c1,2, c2,3, c3,1) =
1

2
P (c1,2)χ(c1,2)δ(c1,2 − c2,3)δ(c2,3 − c3,1) (1)

+
1

2
P (c1,2)P (c2,3)θ(c1,2 − c2,3)δ(c2,3 − c3,1)

+
1

2
P (c2,3)P (c3,1)θ(c2,3 − c3,1)δ(c3,1 − c1,2)

+
1

2
P (c3,1)P (c1,2)θ(c3,1 − c1,2)δ(c1,2 − c2,3) .

Thinking of the quantities c’s as 1 minus the sides of a triangle the previous formula says that only equilateral
(first term on the right hand side of eq. (1)) and isosceles (last three terms of eq. (1)) triangles are allowed, the
scalene triangles have zero probability. Equation (1) implies that the distribution of the three random variables
u = min(c1,2, c2,3, c3,1), v = med(c1,2, c2,3, c3,1) and z = max(c1,2, c2,3, c3,1) is

ρ(u, v, z) =
1

2
χ(u)P (u)δ(v − u)δ(z − v) +

3

2
P (z)P (v)θ(z − v)δ(v − u) , (2)

and from that one deduces that the distribution of the two differences x = v − u, y = z − v is

ρ̃(x, y) = δ(x)

[

1

4
δ(y) +

3

2
θ(y)

∫ 1

y

P (a)P (a − y)da

]

, (3)

whose marginals are

ρ̃(x) = δ(x) , (4)

ρ̃(y) =
1

4
δ(y) +

3

2
θ(y)

∫ 1

y

P (a)P (a − y)da . (5)

We recall that the Hamiltonian of the EA model [12] is given by

Hσ = −
∑

|i−j|=1

Ji,jσiσj (6)
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with Ji,j = ±1 symmetrically distributed and Ising spins σi. Given two spin configurations σ and τ for a system of
linear size L, we consider the main observables: the link-overlap

Q(σ, τ) = (3L3)−1
∑

|i−j|=1

σiσjτiτj (7)

which is the normalized Hamiltonian covariance, and the standard overlap

q(σ, τ) = (L3)−1
∑

i

σiτi (8)

which is related to the Edwards-Anderson order parameter. For every function of two spin configurations c(σ, τ) (for
instance Q or q) the physical model induces a probability distribution by the formula

P3(c1,2, c2,3, c3,1) = 〈δ(c1,2 − c(σ, τ))δ(c2,3 − c(τ, γ))δ(c3,1 − c(γ, σ))〉 , (9)

where σ, τ, γ denote three different equilibrium configurations. Here and in the sequel the brackets 〈·〉 will denote the
average over the disorder Ji,j of the thermal average over the Boltzmann-Gibbs distribution.

We will find very strong evidences that for large volumes the link overlap has the ultrametric structure of eq. (1).
(we are in zero magnetic field and the system is invariant under a global change of all the spins). As we shall see at
the end of the paper the same results are valid also for the standard overlap with the only difference that it has a
symmetric distribution in the interval [−1, 1] and the triangle distribution is built on it by suitable contributions of
the positive and negative values, see formula (10) below.

We present firstly the results for the link overlap for two reasons: the analysis is conceptually simpler, the link overlap
is more fundamental than the standard overlap and contains more interesting information, e.g. two configurations
that differ by a spin inversion of a compact region of size half of the lattice, will have, in the infinite volume limit, a
zero standard overlap, but a large link overlap.

The results can be described as follows. We test numerically the structure of the distribution for the two random
variables X = Qmed − Qmin and Y = Qmax − Qmed where the Q’s represent the largest, medium, and smaller value
of the link-overlap among three copies of the system. The numerical data are compared to the formulas (4) and (5).

• Figure 1: We find that the variances of the two variables have a totally different behavior. The left panel
contains the plot of V ar(X)/V ar(Q) and the right panel of V ar(Y )/V ar(Q) both as a function of V ar(Q). We
find more convenient this parametrization with respect to the usual one using temperature because it allows to
extract more information on size dependence through scaling laws: this is due to the fact that both V ar(Y ) and
V ar(Q) have size dependence changing with T . In particular within the temperature range that we have taken
into account the quantity V ar(Q) decreases monotonically with the temperature. The figure clearly shows that
while the variance of X is shrinking to zero the variance of Y is growing with the volume. Moreover the variance
of X satisfy a scaling law with very good accuracy: V ar(X)/V ar(Q) scales like L−1.18 (see inset) while there is
no scaling law for the second variable.

• Figure 2: The figure displays for two system sizes of L = 12 and L = 20 the data histograms for X (in
black) and Y (in red) variable at T = 0.7. They show that P(X), the empirical distribution of X , is much
more concentrated close to zero, while P(Y ) is spread on a larger scale. The function ρ̃(Y ) provides a test of
consistency with formula (5). The plot of ρ̃(Y ) has been obtained using the data histograms for the function of
X to represent the delta function (4) and the experimental data for the distribution of Q inside the convolution.
The two curves superimpose each other with an excellent agreement. We have also tested that any different
numerical weight other than 1/4 and 3/4 do not yield such an agreement.

The previous results clearly show that the link overlap has an ultrametric distribution. Our next investigation is
about the standard overlap for which we find that it also obeys ultrametricity. Given the three standard overlaps
q1,2, q2,3, q1,3 their probability measure is a priori supported on [−1, 1]3. Reflection invariance (qi,j → αiqi,jαj , with
α = ±1) implies that it is a sum of two orbits, one for S = sign(q1,2q2,3q1,3) > 0 and the other for S < 0. The mean
field theory predicts that only non-frustrated triples (S > 0) contribute to the triangle distribution, namely:

P̄3(q1,2, q2,3, q3,1) =
1

4
[P3(q1,2, q2,3, q3,1)θ(q1,2)θ(q2,3)θ(q3,1) + P3(−q1,2,−q2,3, q3,1)θ(−q1,2)θ(−q2,3)θ(q3,1) (10)

+P3(q1,2,−q2,3,−q3,1)θ(q1,2)θ(−q2,3)θ(−q3,1) + P3(−q1,2, q2,3,−q3,1)θ(−q1,2)θ(q2,3)θ(−q3,1)]
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To check the validity of the previous formula it is convenient to introduce the new random variables

q̃max = max(|q1,2|, |q2,3|, |q1,3|) (11)

q̃med = med(|q1,2|, |q2,3|, |q1,3|) (12)

q̃min = sign(q1,2q2,3q1,3)min(|q1,2|, |q2,3|, |q1,3|) (13)

and verify that their distribution is the (1). The numerical results are illustrated in Fig 3: the left panel shows how the
normalized variance of the variable x̃ = q̃med − q̃min has a clear tendency to vanish for temperatures below the critical
point. The inset displays the log-log plot of V ar(x̃)/V ar(|q|) as a function of L at the lowest available temperature
T = 0.7. At the critical point the quantity is instead size invariant as predicted by the mean field theory. A totally
different behaviour is found for the variable ỹ = q̃max − q̃med where below the critical temperature the normalized
variance is increasing but still size invariant at criticality.

We have also explicitly investigated the contribution of the frustrated triples by plotting the quantity S(−) =
∫ 0

−1
dq̃minp(q̃min)q̃2

min/
∫ 1

−1
dq̃minp(q̃min)q̃2

min: the left panel of Fig. 4 clearly shows that the distribution of q̃min is
supported almost completely on the positive interval and that the negative values are concentrated near zero (for
similar quantities and other three-replicas observables see [16]). This implies that the contribution associated to the
frustrated orbit (S < 0) is very small at large volumes.

The equivalent behavior of link and standard overlap is indeed expected because it extends previous findings of
[17, 18] where it was shown that link and standard overlaps are mutually non fluctuating for the case of Gaussian
couplings. In the right panel of Fig. 4 we show for the model with ±J investigated within this work the analysis
of the relative fluctuation and functional dependence of the two overlaps. It is shown the function G(q2) = 〈Q|q2〉,
i.e. the expected value of the link-overlap for an assigned value of the standard overlap, for different system sizes at
T = 0.7, with a fit to the infinite volume limit g∞(q2). The conditional variance of Q given q2, displayed in the inset,
shows a trend toward a vanishing value for infinite system sizes.

Numerical simulations, like the Delphi Oracle for Heraclitus, neither conceal or reveal the truth, but only hint at
it. In this work we have investigated the property of ultrametricity in a short-range spin-glass model. We have shown
that violations of ultrametricity in finite volumes have a clear tendency to vanish as the system size increases. We
verified moreover that the analytical predictions of the ultrametric replica symmetry breaking ansatz are correct up
to the tested sizes. Our results contradict previous finding [19] done for much smaller volumes (up to 83) in which
lack of ultrametricity was claimed. We have shown instead strong numerical evidence that the spin glass in three
dimensions fulfills the property of ultrametricity for both the link and the standard overlap distributions. A detailed
account of the present investigation will appear elsewhere [20].

Acknowledgments. We thank S. Graffi, F. Guerra, E. Marinari, C. Newman, D. Stein and F. Zuliani for useful
discussions. C. Giardinà and C. Vernia acknowledge GNFM-INdAM for financial support.
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Figure 1: Normalized variances of the two random variables X = Qmed − Qmin (left) and Y = Qmax − Qmed (right) as a
function of V ar(Q). The inset (at left) shows the scaling law for α = 1.18, i.e. LαV ar(X)/V ar(Q) is L-independent.
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[16] D. Iñiguez, G. Parisi, J. Ruiz-Lorenzo J. Phys. A: Math. Gen. 29 4337-4345 (1996)
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[20] P. Contucci, C. Giardinà, C. Giberti, G. Parisi, C. Vernia, in preparation.



6

0.8 1 1.2

0.06

0.08

0.1

0.12

0.14

0.16

0.18

T

Va
r(

x̃)
/V

ar
(|q

|)

0.5 1 1.5 2 2.5
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

T

Va
r(

ỹ)
/V

ar
(|q

|)

L=4
L=6
L=8
L=10
L=12
L=16
L=18
L=20

4 10 20

 

 

0.
06

3
0.

07
9

L

Figure 3: Normalized variances of the two random variables x̃ = q̃med − q̃min (left) and ỹ = q̃max − q̃med (right) as a function
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