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We consider matching with shifts for Gibbsian sequences. We
prove that the maximal overlap behaves as c log n, where c is explicitly
identified in terms of the thermodynamic quantities (pressure) of the
underlying potential. Our approach is based on the analysis of the
first and second moment of the number of overlaps of a given size.
We treat both the case of equal sequences (and nonzero shifts) and
independent sequences.

1. Introduction. In sequence alignment one wants to detect significant
similarities between two (e.g., genetic or protein) sequences. In order to dis-
tinguish “significant” similarities, one has to compute the probability that a
similarity of a certain size occurs for two independent sequences. The sym-
bols in the sequences are, however, not necessarily occurring independently.
From the point of view of statistical mechanics, it is quite natural to assume
that the symbols in the sequence are generated according to a stationary
Gibbs measure: this is the equilibrium measure which maximizes the en-
tropy under physical constraints such as energy conservation. A priori there
is no reason to assume that the symbols (bases) in, for example, a DNA
sequence, are i.i.d. or even Markov. It can, however, be plausible to assume
that there is an underlying Markov chain of which the symbol sequence is
a reduction: in that case we arrive at a so-called hidden Markov chain, and
it is well known that hidden Markov chains have generically infinite mem-
ory (though the symbol at a particular location only exponentially weakly
depends on symbols far away). Therefore, proposing a Gibbs measure with
exponentially decaying interaction as a model for the sequence seems quite
natural. Besides motivation coming from sequence alignment, also in dynam-
ical systems, [4] one can ask for the probability of having a large “overlap” in
a trajectory of length n, but without specifying the location of the piece of
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trajectory that is repeated. It is clear that this probability is related to the
entropy, but not in such a straightforward way as the return time. In (hyper-
bolic) dynamical systems, by coding and partitioning, one again naturally
arrives at Gibbs measures with exponentially decaying interactions.

The first nontrivial problem associated with sequence alignment is the
comparison of two sequences where it is allowed to shift one sequence w.r.t.
the other. Remark that this problem is not easy even in the case of indepen-
dent symbols in the sequence, because one allows for shifting one sequence
w.r.t. the other. The comparison consists in the simplest case in finding the
maximal number of consecutive equal symbols. Given two (independent)
i.i.d. sequences, in [5] and [6] it is proved that the maximal overlap, al-
lowing shifts, behaves for large sequence length as c logn + X , where n is
the length of both sequences, c is a constant depending on the distribution
of the sequence, and where X is a random variable with a Gumbel distri-
bution. The fact that c log(n) is the good scale can be easily understood
intuitively: it corresponds to the maximum of order n weakly dependent
variables. However, even in the case of i.i.d. sequences, it is not so easy to
make that intuition rigorous, as we allow shifts. In fact, the results of [5]
and [6] are based on large deviations, together with an analysis of random
walk excursions. As the proofs use a form of permutation invariance, they
cannot be extended to non-i.i.d. cases. In [9] the maximal alignment with
shift is shown for Markov sequences, which requires a theory of excursions
of random walk with Markovian increments.

In this paper we focus on the more elementary question of showing that
the maximal overlap allowing shifts behaves as c logn, but now in the context
of general Gibbsian sequences. We also allow to match a sequence with itself

(where of course we have to restrict to nonzero shifts). The constant c is
explicitly identified and related to thermodynamic quantities associated to
the potential of the underlying Gibbs measure.

Our approach is based on a first and second moment analysis of the ran-
dom variable N(σ,n, k) that counts the number of shift-matches of size k in a
sequence σ of length n. One easily identifies the scale k = kn = c log(n) which
discriminates the region where the first moment EN(σ,n, kn) goes to zero (as
n →∞) from the region where EN(σ,n, k) diverges. Via a second moment
estimate, we then prove that this scale also separates the N(σ,n, k) → 0
versus N(σ,n, k)→∞ (convergence in probability) region.

Our paper is organized as follows: in Section 2 we introduce the basic
preliminaries about Gibbs measures, in Section 3 we analyze the first mo-
ment of N in the case of matching a sequence with itself and in Section
4 we study the second moment. In Section 5 we treat the case of two in-
dependent (Gibbsian) sequences with the same and with different marginal
distributions.
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2. Definitions and preliminaries. We consider random stationary sequences
[8] σ = {σ(i) : i ∈ Z} on the lattice Z, where σ(i) takes values in a finite
set A. The joint distribution of {σ(i) : i ∈ Z} is denoted by P. We treat
the case where P is a Gibbs measure with exponentially decaying inter-
action; see Section 2.3 below for details. The configuration space Ω = AZ

is endowed with the product topology (making it into a compact metric
space). The set of finite subsets of Z is denoted by S . For V,W ∈ S , we
put d(V,W ) = min{|i− j| : i ∈ V, j ∈ W}. For V ∈ S , the diameter is defined
via diam(V ) = max{|i − j|, i, j ∈ V }. For V ∈ S , FV is the sigma-field gen-
erated by {σ(i) : i ∈A}. For V ∈ S , we put ΩV = AV . For σ ∈Ω and V ∈ S ,
σV ∈ ΩV denotes the restriction of σ to V . For i ∈ Z and σ ∈Ω, τiσ denotes
the translation of σ by i : τiσ(j) = σ(i + j). For a local event E ⊆ Ω, the
dependence set of E is defined by the minimal V ∈ S such that E is FV

measurable. We denote 1 for the indicator function.

2.1. Patterns and cylinders. For n ∈ N, n≥ 1, let Cn = [1, n] ∩ Z. An el-
ement An ∈ ΩCn is called a n-pattern or a pattern of size n. For a pattern
An ∈ ΩCn , we define the corresponding cylinder C (An) = {σ ∈ Ω:σCn = An}.
The collection of all n-cylinders is denoted by Cn =

⋃

An∈ΩCn
C (An). Some-

times, to denote the probability of the cylinder associated to the pattern
An, we will use the abbreviation

P(An) := P(C (An)) = P(σCn = An).(2.1)

For Ak = (σ(1), σ(2), . . . , σ(k)) a k-pattern and 1 ≤ i ≤ j ≤ n, we define the
pattern Ak(i, j) to be the pattern of length j− i+1 consisting of the symbols
(σ(i), σ(i + 1), . . . , σ(j)). For two patterns Ak, Bl, we define their concate-
nation AkBl to be the pattern of length k + l consisting of the k symbols of
Ak followed by the l symbols of Bl. Concatenation of three or more patterns
follows obviously from this.

2.2. Shift-matches. We will study properties of the following basic quan-
tities.

Definition 2.1 (Number of shift-matches). For every configuration σ ∈
Ω and for every n ∈ N, k ∈ N, with k ≤ n, we define the number of matches
with shift of length k up to n as

N(σ,n, k) =
1

2

n−k∑

i=0

n−k∑

j=0,j 6=i

1{(τiσ)Ck
= (τjσ)Ck

}

=
n−k∑

i6=j=0

1(σ(i + 1) = σ(j + 1), σ(i + 2) = σ(j + 2), . . . ,(2.2)

σ(i + k) = σ(j + k)).
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Definition 2.2 (Maximal shift-matching). For every configuration σ ∈
Ω and for every n ∈ N, we define M(σ,n) to be the maximal length of a
shift-matching up to n, that is the maximal k ∈ N (with k ≤ n) such that
there exist i ∈ N and j ∈ N (with 0 ≤ i < j ≤ n− k) satisfying

(τiσ)Ck
= (τjσ)Ck

,(2.3)

where we adopt the convention max(∅) = 0.

Definition 2.3 (First occurrence of a shift-matching). For every config-
uration σ ∈ Ω and for every k ∈ N, we define T (σ,k) to be the first occurrence
of a shift-match, that is, the minimal n ∈ N (with k ≤ n) such that there
exist i ∈ N and j ∈ N (with 0≤ i < j ≤ n− k) satisfying

(τiσ)Ck
= (τjσ)Ck

,(2.4)

where we adopt the convention min(∅) = ∞.

The following proposition follows immediately from these definitions.

Proposition 2.4. The probability distributions of the previous quanti-

ties are related by the following “duality” relations:

P(N(σ,n, k) = 0) = P(M(σ,n) < k) = P(T (σ,k) > n).(2.5)

2.3. Gibbs measures. We now state our assumptions on P, and recall
some basic facts about Gibbs measures [11]. The reader familiar with this
can skip this section.

We choose for P the unique Gibbs measure corresponding to an expo-
nentially decaying translation-invariant interaction. In dynamical systems
language this corresponds to the unique equilibrium measure of a Hölder
continuous potential.

2.3.1. Interactions.

Definition 2.5. A translation-invariant interaction is a map

U :S ×Ω →R,(2.6)

such that the following conditions are satisfied:

1. For all A ∈ S , σ 7→U(A,σ) is FA-measurable.
2. Translation invariance:

U(A + i, τ−iσ) = U(A,σ) ∀A∈ S, i ∈ Z, σ ∈Ω.(2.7)
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3. Exponential decay : there exist γ > 0 such that

‖U‖γ :=
∑

A∋0

eγ diam(A) sup
σ∈Ω

|U(A,σ)| <∞.(2.8)

The set of all such interactions is denoted by U . Here are some standard
examples of elements of U :

1. Ising model with magnetic field h :A = {−1,1}, U({i, i+1}, σ) = Jσiσi+1,
U({i}, σ) = hσi and all other U(A,σ) = 0. Here J,h ∈ R. If J < 0, we have
the standard ferromagnetic Ising model.

2. General finite range interactions. An interaction U is called finite-range if
there exists an R > 0 such that U(A,σ) = 0 for all A ∈ S with diam(A) >
R.

3. Long range Ising models U({i, j}, σ) = Jj−iσiσj with |Jk| ≤ e−γk for some
γ > 0 and U(A,σ) = 0 for all other A ∈ S .

2.3.2. Hamiltonians. For U ∈ U , ζ ∈ Ω, Λ ∈ S , we define the finite-volume
Hamiltonian with boundary condition ζ as

Hζ
Λ(σ) =

∑

A∩Λ 6=∅

U(A,σΛζΛc)(2.9)

and the Hamiltonian with free boundary condition as

HΛ(σ) =
∑

A⊆Λ

U(A,σ),(2.10)

which depends only on the spins inside Λ. In particular, for Ak a pattern,
σ ∈ C (Ak), HCk

(σ) depends only on Ak. We will denote, therefore,

H(C (Ak)) = HCk
(σ)

for σ ∈ C (Ak).
Corresponding to the Hamiltonian in (2.9), we have the finite-volume

Gibbs measures P
U,ζ
Λ , Λ ∈ S , defined on Ω by

∫

f(ξ)dP
U,ζ
Λ (ξ) =

∑

σΛ∈ΩΛ

f(σΛζΛc)
e−Hζ

Λ
(σ)

Zζ
Λ

,(2.11)

where f is any continuous function and Zζ
Λ denotes the partition function

normalizing P
U,ζ
Λ to a probability measure:

Zζ
Λ =

∑

σΛ∈ΩΛ

e−Hζ
Λ(σ).(2.12)
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2.3.3. Gibbs measures with given interaction. For a probability mea-

sure P on Ω, we denote by P
ζ
Λ the conditional probability distribution of

σ(i), i ∈ Λ, given σΛc = ζΛc . Of course, this object is only defined on a set
of P-measure one. For Λ ∈ S,Γ ∈ S and Λ ⊆ Γ, we denote by PΓ(σΛ|ζ) the
conditional probability to find σΛ inside Λ, given that ζ occurs in Γ \Λ.

Definition 2.6. For U ∈ U , we call P a Gibbs measure with interaction
U if its conditional probabilities coincide with the ones prescribed in (2.11),
that is, if

P
ζ
Λ = P

U,ζ
Λ P-a.s. Λ ∈ S, ζ ∈ Ω.(2.13)

In our situation, with U ∈ U , the Gibbs measure P corresponding to U is
unique. Moreover, it satisfies the following strong mixing condition: for all
V , W ∈ S and all events A ∈ FV , B ∈ FW ,

∣
∣
∣
∣

P(A∩B)

P(B)
− P(A)

∣
∣
∣
∣≤ e−c d(V,W ),(2.14)

where c > 0 depends of course on the interaction U .

2.4. Thermodynamic quantities. We now recall some definitions of basic
important statistical mechanics quantities.

Definition 2.7. The pressure p(U) of the Gibbs measure P associated
with the interaction U is defined as

p(U) = lim
n→∞

1

n
logZn,(2.15)

where

Zn =
∑

σCn∈ΩCn

exp

(

−
∑

A⊆Cn

U(A,σ)

)

is the partition function with the free boundary conditions.

Definition 2.8. The entropy s(U) of the Gibbs measure P associated
with the interaction U is defined as

s(U) = lim
n→∞

−
1

n

∑

An∈ΩCn

P(C (An)) log P(C (An)).(2.16)

In terms of the interaction U , we have the following basic thermodynamic
relation between pressure, entropy and the Gibbs measure P corresponding
to U :

s(U) = p(U) +

∫

fU dP,(2.17)
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where

fU(σ) =
∑

A∋0

U(A,σ)

|A|

denotes the average internal energy per site.
We also have the following relation between fU and the Hamiltonian:

Hξ
Λ(σ) =

∑

i∈Λ

τifU(σ) + O(1),(2.18)

where O(1) is a quantity which is uniformly bounded in Λ, σ, ξ.
The function fU is what is called the potential in the dynamical systems

literature. An exponentially decaying interaction U then corresponds to a
Hölder continuous potential fU .

The following is a standard property of (one-dimensional) Gibbs measures
with interaction U ∈ U . For the proof, see [3], page 7. See also [7], pages 164–
165 for properties of one-dimensional Gibbs measures.

Proposition 2.9. For the unique Gibbs measure P with interaction U ,

there exists a constant γ > 1 such that, for any configuration σ ∈Ω and for

any pattern Ak ∈ΩCk
, we have

γ−1e−kp(U)e−H(C (Ak)) ≤ P(C (Ak)) ≤ γe−kp(U)e−H(C (Ak)).(2.19)

Two other well-known properties of Gibbs measures in d = 1, which will
be used often, are listed below.

Proposition 2.10. For the unique Gibbs measure P corresponding to

the interaction U ∈ U , there are constants ρ < 1 and c > 0, such that, for all

Ak ∈ ΩCk
and for all η ∈ Ω,

P(σCk
= Ak) ≤ ρk(2.20)

and

c−1P(σCk
= Ak)≤ P(σCk

= Ak|ηZ\Ck
) ≤ P(σCk

= Ak)c.(2.21)

Proof. Inequality (2.20) follows from the finite-energy property, that
is, there exists δ > 0 such that, for all σ,

0 < δ < P(σi = αi|σZ\{i}) < (1− δ).

This in turn follows from

P(σi = αi|σZ\{i}) =
exp(−Hσ

{i}(αi))
∑

α∈A exp(−Hσ
{i}(α))
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and

sup
σ,αi

Hσ
{i}(αi) < ∞

by the exponential decay condition (2.8).
Therefore,

P(σCk
= Ak) ≤

∏

i∈Ck

sup
σZ\{i}

P(σi = αi|σZ\{i})≤ (1− δ)k.

Inequalities (2.21) are proved in [7], Proposition 8.38 and Theorem 8.39. �

2.5. Useful lemmas. In the proofs of our theorems we will frequently
make use of the following results.

Lemma 2.11. For q ≥ 0, the function
p(qU)

q is nonincreasing.

Proof. From the definition of p(U) and s(U) and from the thermody-

namic relation (2.17), which is equivalent to s = p− q dp
dq , it follows immedi-

ately

d

dq

(
p(qU)

q

)

=−
s(qU)

q2
.

The claim is then a consequence of the positivity of the entropy. �

In order to state the next lemma, we need the following notation which
will be used throughout the paper.

Definition 2.12. Let ak and bk be two sequences of positive numbers.
Then we write

ak ≈ bk,

if log(ak)− log(bk) is a bounded sequence and

ak � bk,

if

ak ≤ ck

with ck ≈ bk.

Note that we have that ≈ and � “behave” as ordinary equalities and
inequalities and are “compatible” with usual equalities and inequalities. For
example, if ak � bk and bk ≈ ck, then ak � ck, if ak ≈ bk and bk ≤ ck, then
ak � ck, etc.
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Lemma 2.13. Define

α = p(U)−
p(2U)

2
.(2.22)

We have α > 0 and
∑

Ak∈ΩCk

[P(σCk
= Ak)]

2 ≈ e−2kα,(2.23)

while, for s > 2,
∑

Ak∈ΩCk

[P(σCk
= Ak)]

s � e−skα.(2.24)

Proof. The positivity of α follows from Lemma 2.11. From Proposition
2.9 we obtain

∑

Ak∈ΩCk

[P(σCk
= Ak)]

2 ≈
∑

Ak∈ΩCk

e−2kp(U)e−2H(C (Ak))

≈ e−2k[p(U)−p(2U)/2] = e−2αk.

For s > 2, we have
∑

Ak∈ΩCk

P(σCk
= Ak)

s ≈
∑

Ak∈ΩCk

e−skp(U)e−sH(C (Ak))

≈ e−sk[p(U)−p(sU)/s] ≤ e−sαk,

where in the last inequality we have used the monotonicity property of
Lemma 2.11. �

3. The average number of shift matches. We will focus on the quantity
N(σ,n, k) of Definition 2.1 and we will study how the number of shift-
matchings behaves when the size of the matching, k, is varied as a function
of the string length, n. It is clear that when k = k(n) is very large (say, of
the order of n), then there will be no matching of size k with probability
close to one, in the limit n→∞. On the other hand, if k = k(n) is too small,
then the number of shift-matchings will be very large with probability close
to one. We want to identify a scale k∗(n) such that N(σ,n, k∗(n)) will have
a nontrivial distribution. Our first result concerns the average of N(σ,n, k).
Define

k∗(n) =
lnn

α
(3.1)

with α as in (2.22). For sequences k′(n) and k(n), we write k(n) ≫ k′(n) if
k(n)− k′(n) →∞ as n→∞.

Then we have the following result.
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Theorem 3.1. Let {k(n)}n∈N be a sequence of integers. Then we have

the following:

1. If k∗(n)≫ k(n), then limn→∞ E(N(σ,n, k(n))) =∞.

2. If k(n) ≫ k∗(n), then limn→∞ E(N(σ,n, k(n))) = 0.
3. If k(n)− k∗(n) is a bounded sequence, then we have

0 < lim inf
n→∞

E(N(σ,n, k(n))) ≤ lim sup
n→∞

E(N(σ,n, k(n))) < ∞.(3.2)

Proof. We will assume (without loss of generality) that the sequence
is such that

lim
n→∞

k(n)

n
= 0.

We may rewrite N(σ,n, k) by summing over all possible patterns of length
k:

N(σ,n, k) =
n−k∑

i=0

n−k∑

j=i+1

∑

Ak∈ΩCk

1{(τiσ)Ck
= (τjσ)Ck

= Ak}.

We split the above sum into two sums, one (S0) corresponding to absence
of overlap between (τiσ)Ck

and (τjσ)Ck
(i.e., the indices i and j are more

than k far apart) and one (S1) where there is overlap:

S0 =
n−2k∑

i=0

n−k∑

j=i+1+k

∑

Ak∈ΩCk

1{(τiσ)Ck
= (τjσ)Ck

= Ak},

S1 =
n−k∑

i=0

i+k∑

j=i+1

∑

Ak∈ΩCk

1{(τiσ)Ck
= (τjσ)Ck

= Ak}.

We have of course E(N(σ,n, k)) = E(S0) + E(S1). In order to prove the first
statement of the theorem, it suffices to show that E(S0) diverges under the
hypothesis k∗(n)≫ k(n). Using translation-invariance, one has

E(S0) =
n−k∑

l=k

(n− k + 1− l)
∑

Ak∈ΩCk

P(σCk
= (τlσ)Ck

= Ak)

=
n−k∑

l=k

(n− k + 1− l)
∑

Ak∈ΩCk

P(σCk
= Ak)P((τlσ)Ck

= Ak|σCk
= Ak).

Because of the mixing conditions (2.14), we have

E(S0) =
n−k∑

l=k

(n− k + 1− l)
∑

Ak∈ΩCk

[P(σCk
= Ak)]

2 + ∆(n,k),(3.3)
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where the error ∆(n,k) is bounded by

|∆(n,k)| ≤ O(1)
n−k∑

l=k

(n− k + 1− l)
∑

Ak∈ΩCk

P(σCk
= Ak)

2e−c(l−k).

Using the mixing property (2.14) and Lemma 2.13, the error can be bounded
by

|∆(n,k)| ≤ O(1)e−2αk
n−2k∑

m=0

(n− 2k −m + 1)e−cm ≤O(1)e−2αk.(3.4)

On the other hand, applying Lemma 2.13, we have that

n−k∑

l=k+1

(n− k + 1− l)
∑

Ak

P(Ak)
2 ≈ (n− 2k)2e−2αk.(3.5)

Combining together (3.3), (3.4) and (3.5), we obtain

(n− 2k)2e−2αk � E(N(σ,n, k)),(3.6)

which proves statement 1 of the theorem.
To prove statement 2, we have to control E(S1), which is the contri-

bution to E(N(σ,n, k) due to self-overlapping cylinders. Using translation-
invariance, we have

E(S1) =
k−1∑

l=1

(n− k + 1− l)
∑

Ak∈ΩCk

P(σCk
= (τlσ)Ck

= Ak).

We further split this in two sums, namely, E(S1) = E(S′
1) + E(S′′

1 ) with

E(S′
1) =

⌊k/2⌋
∑

l=1

(n− k + 1− l)
∑

Ak∈ΩCk

P(σCk
= (τlσ)Ck

= Ak),(3.7)

E(S′′
1 ) =

k−1∑

l=⌊k/2⌋+1

(n− k + 1− l)
∑

Ak∈ΩCk

P(σCk
= (τlσ)Ck

= Ak).(3.8)

Let us consider first E(S′′
1 ), that is, ⌊k/2⌋ < l < k. In this case the overlap

between Ck and τlCk imposes that the sum over cylinders of length k can
be reduced to a sum over cylinders of length l. In the notation of Section
2.1, we have the following inequality:1(σCk

= (τlσ)Ck
= Ak)

(3.9)
≤ 1(σCl+k

= Ak(1, l)Ak(1, l)Ak(1, k − l)).
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In fact, if the pattern Ak is such that the set {σ ∈ Ω:σCk
= (τlσ)Ck

= Ak}
is not empty, then we have equality in (3.9). Hence,

∑

Ak∈Ωk

P(σCk
= (τlσ)Ck

= Ak)

=
∑

Al

∑

Bk−l

P(σCk
= AlBk−l, (τlσ)Ck

= AlBk−l)

(3.10)
≤
∑

Al

P(σCl+k
= AlAlAl(1, k − l))

�
∑

Al

P(Al)
2P(Al(1, k − l)),

where in the first inequality we used the fact that contributions with Bk−l 6=
Al(1, k − l) are zero. Therefore, using Proposition 2.10, we obtain

E(S′′
1 ) �

k∑

l=⌊k/2⌋+1

(n− k − l)
∑

Al

P(Al)
2ρk−l.

From this we deduce, thanks to Lemma 2.13,

E(S′′
1 ) � (n− k)

k∑

l=⌊k/2⌋+1

e−2lαρk−l

≤ (n− k)e−kα
k∑

l=⌊k/2⌋+1

ρk−l

(3.11)

≤ (n− k)e−kα
∞∑

x=0

ρx

≈ (n− k)e−kα.

We now treat E(S′
1), that is, the case with 1 ≤ l ≤ ⌊k/2⌋. Write k = rl + q

with r and s integers, r ≥ 2, 0≤ q ≤ l− 1. If the set {σ :σCk
= (τlσ)Ck

= Ak}
is not empty, then the pattern Ak has to consist of r + 1 repetitions of the
subpattern Ak(1, l) followed by a subpattern Ak(1, q), where q is such that
(r + 1)l + q = k + l. Hence,1(σCk

= (τlσ)Ck
= Ak)≤ 1(σCk+l

= Ak(1, l) · · ·Ak(1, l)
︸ ︷︷ ︸

r+1 times

Ak(1, q)).(3.12)

At this stage one could repeat the same approach as in the previous esti-
mate for E(S′′

1 ) by immediately employing Proposition 2.10. However, this
approach would not work because the repeating blocks are two small. To cir-
cumvent this, we observe that in the pattern [Ak(1, l)]r+1Ak(1, q) there exists
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a piece of length ⌊k/2⌋ which occurs at least two times, and the remaining
l symbols are fixed by that piece. Therefore, using Proposition 2.10,

∑

Ak∈Ωk

P(σCk
= (τlσ)Ck

= Ak)≤
∑

B⌊k/2⌋

P(B⌊k/2⌋)
2ρl.(3.13)

By inserting (3.13) in (3.7) and using Lemma 2.13, we finally have

E(S′
1) � (n− k)e−kα.(3.14)

Combining together the estimates (3.5), (3.11) and (3.14), we obtain so far

E(N(σ,n, k))� (n− k)e−kα + (n− 2k)2e−2kα(3.15)

from which statement 2 of the theorem follows.
Finally, combining (3.6) and (3.15) gives statement 3 of the theorem. �

4. Second moment estimate. In this section we will show that the ran-
dom variable N(σ,n, k(n)) converges in probability to +∞ in the regime
where k(n) ≪ k∗(n), while it converges to 0 in the opposite regime k(n) ≫
k∗(n). Finally, if the difference k(n)− k∗(n) is bounded, then we show that
N(σ,n, k(n)) is tight and does not converge to zero in distribution. These re-
sults will follow as an application of the method of first moment and second
moment, respectively.

Theorem 4.1. Let {k(n)}n∈N be a sequence of integers. For every pos-

itive m ∈ N:

1. If k∗(n)≫ k(n), then limn→∞ P(N(σ,n, k(n))≤ m) = 0.
2. If k(n) ≫ k∗(n), then limn→∞ P(N(σ,n, k(n))≥ m) = 0.
3. If k(n)− k∗(n) is bounded, then N(σ,n, k(n)) is tight and does not con-

verge to zero in distribution. More precisely, we have that there exists a

constant C > 0 such that

lim sup
n→∞

P(N(σ,n, k(n)) > m)≤ C/m(4.1)

and

lim inf
n→∞

P(N(σ,n, k(n)) > 0) > 0.(4.2)

Proof. We will assume, once more, without loss of generality that

lim
n→∞

k(n)

n
= 0.

Statement 2 and (4.1) follow from Theorem 3.1 and the Markov inequality.
To prove statement 1 and (4.2), we use the Paley–Zygmund inequality [10]
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(which is an easy consequence of the Cauchy–Schwarz inequality), which
gives that for all 0 ≤ a≤ 1

P(N ≥ aE(N))≥ (1− a)2
E(N)2

E(N2)
.(4.3)

We fix now a sequence kn ↑∞ such that k∗
n ≫ kn. Consider the auxiliary

random variable

Nn :=
n−kn∑

i,j=0,|i−j|>2kn

1((τiσ)Ckn
= (τjσ)Ckn

).(4.4)

Clearly, to obtain statement 1, it is sufficient that Nn goes to infinity with
probability one. On the other hand, using the first moment computations of
the previous section, we have

E(Nn) ≈ n2e−2αkn .(4.5)

So, in order to use the Paley–Zygmund inequality, it is sufficient to show
that

E(N 2
n)� ξ4

n,(4.6)

where we introduced the notation

ξn := ne−αkn .(4.7)

Remark that ξn →∞ for our choice of kn (as in statement 1).
Indeed, if we have (4.6) in the regime k∗(n)≫ k(n), then the ratio

E(N 2)

(E(N ))2

remains bounded from above as n → ∞, and hence, using (4.3), Nn di-
verges with probability at least δ > 0. Therefore, in that case, by ergodicity,
N(σ,n, kn) ≥Nn goes to infinity with probability one, since the set of σ’s
such that N(σ,n, kn) goes to infinity is translation-invariant, and hence has
measure zero or one.

To see how statement (4.2) follows from (4.6) in the regime where k(n)−
k∗(n) is bounded, use the (more classical) second moment inequality

P(N > 0) ≥
(E(N ))2

E(N 2)

combined with

N(σ,n, k(n)) ≥N .
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We now proceed with the proof of (4.6). We have

E(N 2
n) =

∑

i,j,r,s,|i−j|>2kn,|r−s|>2kn

∑

Akn ,Bkn

P((Akn)i(Akn)j(Bkn)r(Bkn)s),

(4.8)
where we use the abbreviate notation (Akn)i for the event (τiσ)Ckn

= Akn .
Similarly, if we have a word of length l, say, consisting of p symbols of Ap

followed by l−p symbols of Bl−p, we write (ApBl−p)i for the event that this
word appears at location i, that is, the event (τiσ)Cl

= ApBl−p.
The sum in the right-hand side of (4.8) will be split into different sums,

according to the amount of overlap in the set of indices {i, j, r, s}. By this
we mean the following: we say that there is overlap between two indices
i, j if |i − j| < kn. The number of overlaps of a set of indices {i, j, r, s} is
denoted by θ(i, j, r, s) and is the number of unordered pairs of indices which
have overlap. Since we restrict in the sum (4.8) to |i− j| > 2kn, |r− s|> 2kn,
it follows from the triangular inequality that in that case θ(i, j, r, s) ≤ 2.
Therefore, we split the sum into three cases

∑

i,j,r,s,|i−j|>2kn,|r−s|>2kn

∑

Akn ,Bkn

P((Akn)i(Akn)j(Bkn)r(Bkn)s)(4.9)

= S0 + S1 + S2,

where

Sp =
∑

(i,j,r,s)∈Kk,p

∑

A,B

P((Akn)i(Akn)j(Bkn)r(Bkn)s),(4.10)

where we abbreviated

Kkn,p = {(i, j, r, s) : |i− j|> 2kn, |r − s|> 2kn, θ(i, j, r, s) = p}(4.11)

to be the set of indices such that the overlap is p.
1. Zero overlap: S0.
We use Lemma 2.13, and notation (4.7):

S0 �
∑

i,j,r,s

∑

Akn ,Bkn

P(Akn)2P(Bkn)2 � ξ4
n.(4.12)

2. One overlap: S1.
We treat the case |i − r| < kn, i < r < j < s. The other cases are treated

in exactly the same way. Put Akn = [a1, a2, . . . , akn ], Bkn = [b1, b2, . . . , bkn ].
The intersection (Akn)i ∩ (Bkn)r is nonempty if and only if ar = b1, ar+1 =
b2, . . . , akn = bkn−r+1, that is, the last kn − r + 1 symbols of Akn are equal
to the first kn − r + 1 symbols of Bkn .
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Therefore, we obtain that the sum over the patterns Akn ,Bkn in S1 equals
∑

Akn ,Bkn

P((Akn)i(Akn)j(Bkn)r(Bkn)s)

=
∑

Akn ,Bkn

P((AknBkn(kn − r, kn))i(Akn)j(Akn(r, kn)Bkn(kn − r, kn))s)

(4.13)
�

∑

Akn ,Bkn

P(Akn(r, kn))3P(Akn(1, r − 1))2P(Bkn(kn − r, kn))2

� e−3(kn−r)αe−2rαe−2rα.

Summing over the indices (i, j, r, s) ∈ K(kn,1) then gives

S1 � n3e−3αkn
∑

r≤kn

e−rα � ξ3
n.(4.14)

3. Two overlaps: S2.
We treat the case i < r < j < s and r − i < kn, s − j < kn. Other cases

are treated in the same way. Put l1 := i + kn − r + 1, p1 = j + kn − s + 1.
We suppose l1 > p1. Then the last l1 symbols of Akn have to equal the first
l1 symbols of Bkn , otherwise the intersection (Akn)i(Akn)j(Bkn)r(Bkn)s is
empty. Therefore, we obtain that the sum over the patterns Akn ,Bkn in S2

equals
∑

Akn ,Bkn

P((Akn)i(Akn)j(Bkn)r(Bkn)s)

=
∑

Akn ,Bkn

P((AknBkn−l1)i(AknBkn−p1)j)

(4.15)
�

∑

Akn ,Bkn

P(Akn)2P(Bkn−l1)
2ρl1−p1

� e−2kαe−2(k−l1)αρl1−p1.

Summing over the indices in K(k,2) then gives

S2 � n2e−2knα
∑

l1<kn

e−2α(kn−l1)
∑

p1<l1

ρl1−p1 � ξ2
n.(4.16)

Using the bounds (4.12), (4.14) and (4.16) in (4.8) and (4.9), we deduce
(4.6) and then, as explained below, statement 1 of the theorem follows from
the Paley–Zygmund inequality. This completes the proof. �

The following result relates Theorem 4.1 and the behavior of the maximal
shift-matching, and is the analogue of Theorem 1 in [6] (which is, however,
convergence almost surely for more general comparison of sequences based
on scores, but for independent sequences).
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Proposition 4.2. Let M(σ,n) be defined as in Definition 2.2. Recall

α = p(U)−
p(2U)

2
.

Then we have that

M(σ,n)

n
→ α,

where the convergence is in probability.

Proof. Use the relations of Proposition 2.4. We have

P

(
M(σ,n)

α logn
≥ (1 + ε)

)

≤ P(N(σ,n, ⌊α(1 + ε) logn⌋) ≥ 1)

and

P

(
M(σ,n)

α logn
< (1− ε)

)

≤ P(N(σ,n, ⌈α(1− ε) log n⌉) = 0).

So the result follows from Theorem 4.1. �

5. Two independent strings. In this section we study the number of
matches with shift when two independent sequences σ and η are considered.
The marginal distributions of σ and η are denoted with P and Q, which
are chosen to be Gibbs measure with exponentially decaying translation-
invariant interactions U(X,σ) and V (X,η), respectively. We assume the
two strings belong to the same alphabet A. In analogy with the case of one
string, we give the following definition.

Definition 5.1 (Number of shift-matches for 2 strings). For every cou-
ple of configurations σ, η ∈Ω×Ω and for every n ∈ N, k ∈ N, with k < n, we
define the number of matches with shift of length k as

N(σ, η,n, k) =
n−k∑

i=0

n−k∑

j=0,j 6=i

1{(τiσ)Ck
= (τjη)Ck

}.(5.1)

Of course, in the case σ = η we recover (up to a factor 2) the previous
Definition 2.1, that is, N(σ,σ,n, k) = 2N(σ,n, k).

5.1. Identical marginal distribution. We treat here the case Q = P, that
is, the two sequences σ and η are chosen independently from the same Gibbs
distribution P with interaction U(X,σ). Then the results of the previous
section are generalized as follows.

Theorem 5.2. Let {k(n)}n∈N be a sequence of integers:
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1. If k∗(n)≫ k(n), then limn→∞ EP⊗P[N(σ, η,n, k(n))] = ∞.

2. If k∗(n)≪ k(n), then limn→∞ EP⊗P[N(σ, η,n, k(n))] = 0.
3. If k(n)− k∗(n) is a bounded sequence, then we have

0 < lim inf
n→∞

EP⊗P(N(σ, η,n, k(n)))

(5.2)
≤ lim sup

n→∞
EP⊗P(N(σ, η,n, k(n))) <∞.

Proof. Because of independence, we immediately have

EP⊗P[N(σ, η,n, k)]

=
n−k∑

i6=j=0

∑

Ak∈Ωk

P((τiσ)Ck
= Ak)P((τjη)Ck

= Ak)

(5.3)
= (n− k)2

∑

Ak∈ΩCk

P(Ak)
2

≈ (n− k)2e−2kα. �

Theorem 5.3. Let {k(n)}n∈N be a sequence of integers. For every pos-

itive m ∈ N:

1. If k∗(n)≫ k(n), then limn→∞ P⊗ P[N(σ, η,n, k(n)) ≤ ε] = 0.
2. If k∗(n)≪ k(n), then limn→∞ P⊗ P[N(σ, η,n, k(n)) ≥ ε] = 0.
3. If k(n) − k∗(n) is bounded, then N(σ, η,n, k(n)) is tight and does not

converge to zero in distribution. More precisely, we have that there exists

a constant C > 0 such that

lim sup
n→∞

P⊗ P(N(σ, η,n, k(n)) > m)≤ C/m(5.4)

and

lim inf
n→∞

P⊗ P(N(σ, η,n, k(n)) > 0) > 0.(5.5)

Proof. The strategy of the proof is as in Theorem 4.1. Thus, we need
to control the second moment to show that E(N2)≈ (E(N))2. We start from

EP⊗P(N2(σ, η,n, k))

=
n−k∑

i1,j1,i2,j2=1

∑

Ak,Bk∈Ωk

P((τi1σ)Ck
= Ak, (τi2σ)Ck

= Bk)(5.6)

× P((τj1η)Ck
= Ak, (τj2η)Ck

= Bk).
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Using translation-invariance and defining new indices l1 = i2 − i1 and l2 =
j2 − j1, we have

EP⊗P(N2(σ, η,n, k))

=
∑

Ak,Bk∈Ωk

(
n−k∑

l1=1

(n− k + 1− l1)P(σCk
= Ak, (τl1σ)Ck

= Bk)

×
n−k∑

l2=1

(n− k + 1− l2)P(ηCk
= Ak, (τl2η)Ck

= Bk)

)

.

We have to distinguish three kinds of contributions in the previous sums:

1. Zero overlap, that is, l1 > k, l2 > k. Then

∑

Ak,Bk∈Ωk

(
n−k∑

l1=k+1

(n− k + 1− l1)P(σCk
= Ak, (τl1σ)Ck

= Bk)

×
n−k∑

l2=k+1

(n− k + 1− l2)P(ηCk
= Ak, (τl2η)Ck

= Bk)

)

(5.7)
≈ (n− k)4

∑

Ak,Bk∈Ωk

P(Ak)
2P(Bk)

2

≈ (n− k)4e−4kα.

2. One overlap. We treat the case l1 ≤ k and l2 > k (other cases are treated
similarly). We have

∑

Ak,Bk∈Ωk

(
k∑

l1=1

(n− k + 1− l1)P(σCk
= Ak, (τl1σ)Ck

= Bk)

×
n−k∑

l2=k+1

(n− k + 1− l2)P(ηCk
= Ak, (τl2η)Ck

= Bk)

)

≈ (n− k)3
k∑

l1=1

∑

Dl1
,Ek−l1

,Fl1

P(Dl1Ek−l1Fl1)P(Dl1Ek−l1)P(Ek−l1Fl1)

(5.8)

≈ (n− k)3
k∑

l1=1

∑

Dl1
,Ek−l1

,Fl1

P(Dl1)
2P(Ek−l1)

3P(Fl1)
2

� (n− k)3
k∑

l1=1

e−2l1αe−2l1αe−3(k−l1)α

≤ (n− k)3e−3kα.
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3. Two overlaps. We treat the case l1 < l2 ≤ k (other cases are treated sim-
ilarly). We have

∑

Ak,Bk∈Ωk

(
k∑

l1=1

(n− k + 1− l1)P(σCk
= Ak, (τl1σ)Ck

= Bk)

×
k∑

l2=1

(n− k + 1− l2)P(ηCk
= Ak, (τl2η)Ck

= Bk)

)

≈ (n− k)2
k∑

l1,l2=1

∑

Dl1
,El2−l1

,Fk−l2
,Gl1

,Hl2−l1

P(Dl1El2−l1Fk−l2Gl1)

× P(Dl1El2−l1Fk−l2Gl1Hl2−l1)
(5.9)

≈ (n− k)2
k∑

l1,l2=1

∑

Dl1

P(Dl1)
2
∑

El2−l1

P(El2−l1)
2
∑

Fk−l2

P(Fk−l2)
2

×
∑

Gl1

P(Gl1)
2
∑

Hl2−l1

P(Hl2−l1)

� (n− k)2
k∑

l1,l2=1

e−2l1αe−2(l2−l1)αe−2(k−l2)αe−2l1α

≤ (n− k)2e−2kα.

Combining together (5.7), (5.8) and (5.9) and similar expression for other
cases with one and two overlaps, we obtain the second moment condition
E(N2)� (E(N))2. �

5.2. Different marginal distributions. In the case P 6= Q, the first mo-
ment is controlled in an analogous way, but the second moment analysis is
different, and, in fact, as we will show in an example, it can happen for some
scale kn →∞ that:

1. EP⊗Q(N(σ, η,n, kn)) →∞ as n→∞,
2. P ⊗Q(N(σ, η,n, kn) = 0) > e−δ for some δ > 0 independent of n.

This means that in order to decide whether N(σ, η,n, kn) goes to infinity
P ⊗Q almost surely, it is not sufficient to have EP⊗Q(N(σ, η,n, kn))→∞.

We start with the case P and Q Gibbs measures with potentials U,V ,
respectively, and define

α̃ = 1
2p(U) + 1

2p(V )− 1
2p(U + V ) > 0(5.10)

and

k̃∗ =
logn

α̃
,(5.11)
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then we have the following:

Theorem 5.4. Let {k(n)}n∈N be a sequence of integers.

1. If k̃∗(n)≫ k(n), then limn→∞ EP⊗Q(N(σ, η,n, k(n))) = ∞.

2. If k̃∗(n)≪ k(n), then limn→∞ EP⊗Q(N(σ, η,n, k(n))) = 0.

3. If k(n)− k̃∗(n) is a bounded sequence, then we have

0 < lim inf
n→∞

EP⊗Q(N(σ, η,n, k(n)))

(5.12)
≤ lim sup

n→∞
EP⊗Q(N(σ, η,n, k(n))) < ∞.

Proof. Start by rewriting

N(σ, η,n, k) =
n−k∑

i=0

n−k∑

j=0,j 6=i

∑

Ak∈Ωk

1{(τiσ)Ck
= Ak, (τjη)Ck

= Ak}.

Taking into account the independence of the measures P and Q, we obtain

EP⊗Q(N(σ, η,n, k))

=
n−k∑

i6=j=0

∑

Ak∈Ωk

P((τiσ)Ck
= Ak)Q((τjη)Ck

= Ak)(5.13)

≈ (n− k)2
∑

Ak∈ΩCk

e−kp(U)e−kHU (C (Ak))e−kp(V )e−kHV (C (Ak))

≈ (n− k)2e−k[p(U)+p(V )−p(U+V )]

= (n− k)2e−2kα̃,

where in the second line we made use of translation-invariance and Propo-
sition 2.9. �

In case 1 of Theorem 5.4, we will not in general be able to conclude
that N(σ, η,n, k(n)) goes to infinity almost surely as n →∞. Indeed, if we
compute the second moment, we find terms analogous to the case P = Q,
of which now we have to take the P⊗Q expectation. In particular, the one
overlap contribution will contain a term of the order

(n− k)3
∑

Ek

P(Ek)Q(Ek)
2.

If P 6= Q, this term may however not be dominated by n4e−4kα̃. Indeed, the
inequality

∑

Ek

P(Ek)Q(Ek)
2 ≤

(
∑

Ek

P(Ek)Q(Ek)

)3/2
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is not valid in general. In particular, if P gives uniform measure to cylinders
Ek and Q concentrates on one particular cylinder, then this inequality will
be violated.

As an example, inspired by this, we choose P to be a Gibbs measure with
potential U , and Q = δa, where δa denotes the Dirac measure concentrating
on the configuration η(x) = a for all x ∈ Z (which is strictly speaking not a

Gibbs measure, but a limit of Gibbs measures). In that case P ⊗ Q almost
surely,

N(σ, η,n, k(n)) = n
n−k∑

i=1

1((τiσ)Ck
= [a]k),

where [a]k denotes a block of k successive a’s. Therefore,

P⊗Q(N(σ, η,n, k(n)) = 0) = P(Θ[a]k(σ) ≥ n− k),

where

Θ[a]k(σ) = inf{j > 0 :σj = a,σj+1 = a, . . . , σj+k−1 = a}

is the hitting time of the pattern [a]k in the configuration σ. For this hitting
time we have the exponential law [1, 2] which gives

P(Θ[a]k(σ) ≥ n)≥ e−λP([a]k)n

with λ a positive constant not depending on n. Now we choose the scale kn

such that the first moment of N(σ, η,n, k(n)) diverges as n →∞, that is,
such that

n2P([a]kn)→∞.

Furthermore, we impose that

P([a]kn)n ≤ δ

for all n. In that case

P(Θ[a]kn
(σ) ≥ n)≥ e−λP([a]kn ))n ≥ e−λδ,

which implies N(σ, η,n, kn) does not go to infinity P⊗Q almost surely.
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