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Abstract: In the context of Markov processes, both in discrete and continuous

setting, we show a general relation between duality functions and symmetries of

the generator. If the generator can be written in the form of a Hamiltonian of

a quantum spin system, then the “hidden” symmetries are easily derived. We

illustrate our approach in processes of symmetric exclusion type, in which the

symmetry is of SU(2) type, as well as for the Kipnis-Marchioro-Presutti (KMP)

model for which we unveil its SU(1, 1) symmetry. The KMP model is in turn

an instantaneous thermalization limit of the energy process associated to a large

family of models of interacting diffusions, which we call Brownian energy process

(BEP) and which all possess the SU(1, 1) symmetry. We treat in details the

case where the system is in contact with reservoirs and the dual process becomes

absorbing.
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1 Introduction

Duality is a technique developed in the probabilistic literature that allows to obtain elegant

and general solutions of some problems in interacting particle systems. One transforms the

evaluation of a correlation function in the original model to a simpler quantity in the dual

one.

The basic idea of duality in interacting particle systems goes back to Spitzer [11] who

introduced it for symmetric exclusion process (SEP) and independent random walkers to

characterize the stationary distribution. Later, Ligget [8] systematically introduced duality

for spin systems and used it, among others, for the complete characterization of ergodic

properties of SEP, voter model, etc. Duality property might also be useful in the context of

transport models and non-equilibrium statistical mechanics, that is when the bulk particle

systems is in contact at its boundaries with reservoirs working at different values of their

parameters. For instance, considering again the symmetric exclusion process in contact

with particle reservoirs at different chemical potentials, Spohn used duality to compute

the 2-point correlation function [12], showing the existence of long-range correlations in

non-equilibrium systems. In the case of energy transport, i.e. interacting particle systems

with a continuous dynamical variable (the energy) connected at their boundaries to thermal

reservoirs working at different temperatures, duality has been constructed for the Kipnis-

Marchioro-Presutti (KMP) model [7] for heat conduction and also for other models [6].

Consequences of duality include the possibility to express the n-point energy correlation

functions in terms of n (interacting) random walkers. Duality has also been used in the

study of biological population models, see [9] and references therein.

One should notice that the construction of a dual process is usually performed with

an ad-hoc procedure which requires the ansatz of a proper duality function on which the

duality property can be established. The closure of n-point correlations functions at each

order might be an indication that a dual process exists. However in the general case the

closure property is neither sufficient nor necessary to construct the dual process. In this

paper we present a general procedure to derive a duality function and a dual process from

the symmetries of the original process. When applied to transport models, our theorems

allow to identify the source of the existence of a dual process with the non-abelian symmetries

of the evolution operator. The idea is simple: transport models have in the bulk a symmetry

associated with a conserved quantity, the one that is transported. It may happen in some
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cases that this symmetry is a subgroup of a larger group, i.e. that extra (less obvious)

symmetry are present. In that case, one can describe the same physical situation as the

transport of another quantity (another element of the group), and in some cases this makes

the problem simpler. In the physics literature Sandow and Schutz [10] realized that this

is case for the SEP process, whose SU(2) symmetry they made explicit by writing the

evolution operator in quantum spin notation. In this paper we study in full generality the

relation between duality and symmetries. We give a general scheme for constructing duality

for continuous time Markov processes whose generator has a symmetry. For interacting

particle systems used as transport models we detail the effect of the reservoirs. For particle

transport models we generalize the symmetric exclusion process to a situation where each site

can accommodate up to 2j particles, with j ∈ N/2. For energy transport models we uncover

a hidden SU(1, 1) symmetry in a large class of models for energy transport (including KMP

model) which explains their duality property, as the SU(2) does for the SEP process.

2 Definitions and Results

2.1 Generalities

Let (ηt)t≥0 denote a Markov process on a state space Ω. Elements of the state space are

denoted by η, ξ, ζ,.. The probability measure on path space starting from η is called Pη, and

Eη denotes expectation with respect to Pη. In the whole of this paper, we will restrict to

Feller processes. In that case, to the process (ηt)t≥0 there corresponds a strongly continuous,

positivity-preserving, contraction semigroup At : C(Ω) → C(Ω) with domain the set C(Ω) of

continuous functions f : Ω → R

Atf(η) := Eηf(ηt) = E(f(ηt)|η0 = η) =

∫

f(η′)pt(η, dη
′) (1)

where pt(η, dη
′) is the transition kernel of the process. The infinitesimal generator of the

semigroup is denoted by L,

Lf = lim
t→0

Atf − f

t
and is defined on its natural domain, i.e. the set of functions f : Ω → R for which the limit

in the r.h.s. exists in the uniform metric. We also consider the adjoint of the semigroup,

with domain M(Ω) the set of signed finite Borel measures, A∗
t : M(Ω) → M(Ω), defined by

< f,A∗
tµ > = < Atf, µ >
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where the pairing < ·, · >: C(Ω) ×M(Ω) → R is given by

< f, µ >=

∫

fdµ

The processes which appear in our applications will always be either jump process or diffu-

sions.

Example 2.1. In the case that the Markov process (ηt)t≥0 is a pure jump process and the

state space Ω is finite or countable then the generator is of the form

Lf(η) =
∑

η′∈Ω

c(η, η′)(f(η′) − f(η))

where c(η, η′) ≥ 0 is the rate for a transition from configuration η to configuration η′. Equiv-

alently we can write

Lf(η) =
∑

η′∈Ω

L(η, η′)f(η′)

where L(η, η′) is a matrix having positive off-diagonal elements and rows sum equal to zero,

namely

L(η, η′) =

{

c(η, η′) if η 6= η′

−∑η′′ 6=η c(η, η
′′) if η = η′

In the context of a countable state space Ω we have the usual exponential of a matrix, so that

At = etL =
∞
∑

i=0

(tL)i/i!

and A∗
t = AT

t where the superscript T denotes transposition.

Example 2.2. General diffusion processes with state space Ω = R
N are also considered

here. In this case the generator take the form of a differential operator of the second order

Lf =

N
∑

i,j=1

a(xi, xj)
∂2f

∂xi∂xj
+

N
∑

i=1

b(xi)
∂f

∂xi

(see [13] for general conditions which guarantees that L satisfy the maximum principle and

thus generate a positivity preserving semigroup).
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2.2 Duality and Self-duality

Definition 2.3 (self-duality). Consider two independent copies (ηt)t≥0 and (ξt)t≥0 of a

continuous time Markov processes on a state space Ω. We say that the process is self-dual

with self-duality function D : Ω × Ω → R if for all (η, ξ) ∈ Ω × Ω, we have

EηD(ηt, ξ) = EξD(η, ξt) (2)

Definition 2.4 (duality). Consider two continuous time Markov processes: (ηt)t≥0 on a

state space Ω and (ξt)t≥0 on a state space Ωdual. We say that (ξt)t≥0 is the dual of (ηt)t≥0

with duality function D : Ω × Ωdual → R if for all η ∈ Ω, ξ ∈ Ωdual we have

EηD(ηt, ξ) = E
dual
ξ D(η, ξt) (3)

If At denotes the semigroup of the original process (ηt)t≥0 and Adual
t denotes the semi-

group of the related dual process (ξt)t≥0 then, using Eq. (1), the definition 2.4 is equivalent

to

AtD(η, ξ) = Adual
t D(η, ξ) (4)

where it is understood that on the l.h.s. of (4) the operator At works on the η variable,

while on the r.h.s. the operatorAdual
t works on the ξ variable.

If the original process (ηt)t≥0 and the dual process (ξt)t≥0 are Markov processes with

finite or countably infinite state space Ω, resp. Ωdual, (cfr. Example 2.1) property (4) is

equivalent with its “infinitesimal version” in terms of the generators

∑

η′∈Ω

L(η, η′)D(η′, ξ) =
∑

ξ′∈Ω

Ldual(ξ, ξ
′)D(η, ξ′) (5)

In matrix notation, this reads

LD = DLT
dual (6)

where D is the matrix with elements D(η, ξ) and (η, ξ) ∈ Ω × Ωdual. Remark that in this

case D is not necessarily a square matrix, because the state spaces Ω and Ωdual are not

necessarily equal and or of equal cardinality.

When Ω = Ωdual and At = Adual
t , then an equivalent condition for self-duality (cfr. (2))

is

LD = DLT (7)
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2.3 Duality and Symmetries

We first discuss self-duality and then duality. We consider the simple context of finite

or countably infinite state space Markov processes. In many cases of interacting particle

systems, the generator is a sum of operators working only on a finite set of coordinates of

the configuration. Therefore, showing (self)-duality reduces to showing (self)-duality for the

individual terms appearing in this sum, which is a finite state space situation.

Definition 2.5. Let A and B be two matrices having the same dimension. We say that A

is a symmetry of B if A commutes with B, i.e.

AB = BA (8)

The first theorem shows that self-duality functions and symmetries are in one-to-one

correspondence, provided L and LT are similar matrices, which is automatically the case in

the finite state space context.

Theorem 2.6. Let L be the generator of a finite or countable state space Markov process.

Let Q be a matrix such that

LT = QLQ−1 . (9)

Then we have

1. If S is a symmetry of the generator, then SQ−1 is a self-duality function.

2. If D is a self-duality function, then DQ is a symmetry of the generator.

3. If S is a symmetry of LT , then Q−1S is a self-duality function

4. If D is a self-duality function, then QD commutes with LT .

Proof. The proof is elementary. We show items 1 and 2 (item 3 and 4 are obtained in a

similar manner). Combining (9) with (8), we find

L(SQ−1) = (SQ−1)LT (10)

i.e., D = SQ−1 is a self-duality function (see Eq. (7)). Conversely, if D is a self-duality

function, then combining (9) with (7) one proves (8) for S = DQ.
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Remark 2.7. Self-duality functions are not unique, i.e. there might exist several self-duality

functions for a process. This is evident form the fact that if D is a duality function for

self-duality, and S is a symmetry, then SD is also a duality function for self-duality. An

interesting question is to study the vector space of self-duality functions, its dimension, etc.

However this question is not addressed in this paper. See [9] for a discussion of this issue

and some examples in the context of Markov processes with discrete state space.

Remark 2.8. In the finite state space context, L and LT are always similar matrices [14],

i.e., there exists a conjugation matrix Q such that LT = QLQ−1. In interacting particle

system the matrix Q can usually be easily constructed. As an example, in the case that L
has a reversible measure, i.e., a probability measure µ on Ω such that

µ(η)L(η, η′) = µ(η′)L(η′, η) (11)

for all η, η′ ∈ Ω, then a diagonal conjugation matrix Q is given by

Q(η, η′) = µ(η)δη,η′ (12)

In general, if µ is a stationary measure then

Lrev(η, ξ) :=
L(ξ, η)µ(η)

µ(ξ)

is the generator of the time-reversed process, which is clearly similar to LT . Therefore, the

similarity of L and LT is equivalent with the similarity of the generator and the time-reversed

generator.

Self-duality is a particular case of duality. To generalize Theorem 2.6 to the context of

(general) duality we need the notion of conjugation between two matrices.

Definition 2.9. Let A be a matrix of dimension m×m and let B be a matrix of dimension

n× n. A and B are called conjugate if there exist matrices C of dimension m×n and C̃ of

dimension n×m such that

AC = CB, C̃A = BC̃ (13)

We then have the following analogue of Theorem 2.6.

Theorem 2.10. Let L and Ldual be generators of finite or countable state space Markov

chains. Then we have the following.
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1. If Q is the matrix that gives the similarity

LT
dual = QLdualQ

−1 (14)

and C and C̃ are the matrices giving the conjugacy between L and Ldual in the sense

of definition 2.9, then:

(a) For any symmetry S of the generator L, D = SCQ−1 is a duality function.

(b) If D is a duality function, then S = DQC̃ is a symmetry of L.

2. If Q is the matrix that gives the similarity

LT = QLQ−1 (15)

and C and C̃ are the matrices giving the conjugacy between LT and LT
dual in the sense

of definition 2.9, then:

(a) For any symmetry S of the transposed generator LT , Q−1SC is a duality function.

(b) If D is a duality function, then QDC̃ commutes with LT .

Proof. The proof of item 1(a) is given by the following series of equalities

L(SCQ−1) = SLCQ−1 = SCLdualQ
−1 = (SCQ−1)LT

dual (16)

The first equality uses the hypothesis of S being a symmetry of the generator L, the second

comes from the conjugation of the generators, the third is obtained from the similarity

transformation (14). If one recall (6) then Eq.(16) shows that D = SCQ−1 is a duality

function. The proof of the other items follow from a similar argument.

3 Examples with two sites

In this section we present a series of examples where particles jump on two lattice sites. We

wish to show how (self)-duality can be established by making use of the previous theorems.

To identify the symmetries we will rewrite the stochastic generator, or its adjoint, in terms

of generators of some symmetry group. Some of the examples will be useful later for the

study of transport models. In fact, many transport models such as the exclusion process

have a generator that is written as the sum of operators working on two sites.
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3.1 Self-duality for symmetric exclusion

We first recover the classical self-duality for symmetric exclusion [8]. One has two sites

(labeled 1, 2) and configurations have at most one particle at each site. Particles hop at

rate one from one site to another, and jumps leading to more than one particle at a site are

suppressed. As usual we write 0, 1 for absence resp. presence of particle. The state space

is then Ω = {00, 01, 10, 11}. Elements in the state space are denoted as η = (η1η2). The

matrix elements of the generator are given by L01,10 = L10,01 = 1 = −L01,01 = −L10,10, and

all other elements are zero.

To apply Theorem 2.6 we need to identify a symmetry S of the generator. The transposed

of the generator can be written as

LT = J+
1 ⊗ J−

2 + J−
1 ⊗ J+

2 + 2J0
1 ⊗ J0

2 − 1

2
11 ⊗ 12 (17)

where the operators Ja
i with i ∈ {1, 2} and a ∈ {+,−, 0} act on a 2-dimensional Hilbert

space, with basis |0〉 =
(

1
0

)

, |1〉 =
(

0
1

)

, as

J+
i =

(

0 0

1 0

)

J−
i =

(

0 1

0 0

)

J0
i =

(

−1/2 0

0 1/2

)

(18)

and 1i is the identity matrix. The operators Ja
i with a ∈ {+,−, 0} satisfy the SU(2)

commutation relations:

[J0
i , J

±
i ] = J±

i

[J−
i , J

+
i ] = −2J0

i (19)

from which we deduce (cfr (17)) that LT commutes with the three generators of the SU(2)

group, Ja = Ja
1 ⊗12 +11⊗Ja

2 for a ∈ {+,−, 0}. A possible choice for the symmetry of LT is

then obtained by considering the creation operator J+ and exponentiating in order to have

a factorized form

S = eJ
+

= eJ
+
1 ⊗12+11⊗J+

2 = eJ
+
1 ⊗ eJ

+
2 = S1 ⊗ S2

More explicitly, in the basis |0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉, the matrix S is

S =

(

1 0

1 1

)

⊗
(

1 0

1 1

)

=













1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1
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We also need the similarity transformation between L and LT . The matrix Q, relating L

to its transposed, is the identity since L is symmetric. A duality function for self-duality is

thus given by D = Q−1S = S. Notice that D can also be written as

D(η1η2, ξ1ξ2) =
∏

i∈{1,2}:ξi=1

ηi

which is the usual self-duality function of [8].

3.2 Self-duality for 2j-symmetric exclusion

Now we consider two sites with at most 2j particles on each site, with j ∈ N/2. The state

space is Ω = Ω1 × Ω2 where Ωi = {0, 1, . . . 2j}. The rates for transitions are the following:

if there are η1 particles at site 1 and η2 particles at site 2, a particle is moved from 1 to 2 at

rate η1(2j− η2) and from 2 to 1 at rate η2(2j− η1). So in this case the generator is given by

L(η1η2, η
′
1η

′
2) = η1(2j − η2)δη1−1,η′

1
δη2+1,η′

2
+ η2(2j − η1)δη1+1,η′

1
δη2−1,η′

2

−(η1(2j − η2) + η2(2j − η1))δη1,η′
1
δη2,η′

2

The transposed of this generator can also be expressed as the scalar product between two

spin operators satisfying the SU(2) algebra, namely

LT = J+
1 ⊗ J−

2 + J−
1 ⊗ J+

2 + 2J0
1 ⊗ J0

2 − 2j211 ⊗ 12 (20)

where the Ja
i , i ∈ {1, 2} and a ∈ {+,−, 0}, act on a (2j + 1)-dimensional Hilbert space with

orthonormal basis |0〉, |1〉, . . . |2j〉 as

J+
i |ηi〉 = (2j − ηi)|ηi + 1〉
J−

i |ηi〉 = ηi|ηi − 1〉
J0

i |ηi〉 = (ηi − j)|ηi〉 (21)

The standard symmetric exclusion process of the previous section is recovered when j = 1/2.

Reasoning as above, a symmetry of the generator is

S = S1 ⊗ S2 = eJ
+
1 ⊗ eJ

+
2

which has matrix elements S(η1η2, ξ1ξ2) = S1(η1, ξ1)S2(η2, ξ2) with

Si(ηi, ξi) = 〈ηi|eJ
+
i |ξi〉 =

(

2j − ηi

ηi − ξi

)

(22)
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where we adopt the convention
(

n
m

)

= 0 for m > n.

To detect the matrix Q giving the similarity transform between L and LT (notice that

L is not symmetric anymore for j 6= 1/2) we make use of remark 2.8 and use the fact

that the invariant measures of the 2j-symmetric exclusion process are products of binomials

Bin(2j, ρ), with a free parameter 0 < ρ < 1 (this will be proved in Theorem 4.2). Therefore,

if we choose ρ = 1/2 then a possible choise is Q = Q1 ⊗Q2 with

Qi(ηi, η
′
i) = δηi,η′

i

(

2j

ηi

)

(23)

Combining (22) and (23), Theorem 2.6 then implies that a duality function for self-duality

is given by

D = D1 ⊗D2 = Q−1
1 S1 ⊗Q−1

2 S2

with

Di(ηi, ξi) = (Q−1
i Si)(ηi, ξi) =

(ηi

ξi

)

(

2J
ξi

) (24)

Later, in Theorem 4.2, we will give a probabilistic interpretation of this function.

3.3 Self-duality for the dual-BEP

This is a process that can be viewed as a “bosonic” analogue of the SEP (particles attract

each other rather than repel with the exclusion hard core constraint). The state space is

Ω = Ω1 × Ω2 with Ωi = N, i.e. we have two sites each of which can accommodate an

unlimited number of particles. For η1 particles at site 1, η2 particles at site 2, the rate of

putting a particle from 1 to 2 is given by 2η1(2η2 +1) and the rate of moving a particle from

2 to 1 is given by 2η2(2η1 + 1) . We will see later how this process arises naturally as a dual

of the Brownian Energy Process (BEP), see Section 5 below.

The matrix of the generator is given by

L(η1η2, η
′
1η

′
2) = 2η1(2η2 + 1)δη′

1,η1−1δη′
2,η2+1 + 2η2(2η1 + 1)δη′

1,η1+1δη′
2,η2−1

−(8η1η2 + 2η1 + 2η2)δη1,η′
1
δη2,η′

2
. (25)

The transposed of the generator can be written in terms of generators of a SU(1, 1) algebra

11



as follows. On each site i ∈ {1, 2} we consider operators Ka
i with a ∈ {+,−, 0} given by

K+
i |ηi〉 = (ηi + 1/2)|ηi + 1〉

K−
i |ηi〉 = ηi|ηi − 1〉
K0

i |ηi〉 = (ηi + 1/4)|ηi〉 (26)

They satisfy the commutation relations of SU(1, 1):

[K0
i ,K

±
i ] = ±K±

i

[K−
i ,K

+
i ] = 2K0

i (27)

The transposed of the generator then reads

LT = 4

(

K+
1 ⊗K−

2 +K−
1 ⊗K+

2 − 2K0
1 ⊗K0

2 +
1

8
11 ⊗ 12

)

(28)

From the commutation relations, it is easy to see that LT commutes with Ka = Ka
1 ⊗ 12 +11 ⊗Ka

2 , for a ∈ {+,−, 0}. A possible symmetry is then given by the matrix

S = S1 ⊗ S2 = eK
+
1 ⊗ eK

+
2

which has matrix elements S(η1η2, ξ1ξ2) = S1(η1, ξ1)S2(η2, ξ2) with

Si(ηi, ξi) = 〈ηi|eK
+
1 |ξi〉 =

(2ηi − 1)!!

(2ξi − 1)!!(ηi − ξi)! 2ηi−ξi
(29)

A similarity transformation LT = Q−1LQ to pass to the transposed is suggested (remark

2.8) by the knowledge of the stationary measure of the dual-BEP (see Theorem 5.1)

Q(η1η2, η
′
1η

′
2) = Q1(η1, η

′
1)Q2(η2, η

′
2)

with

Qi(ηi, ξi) = δηi,ξi

(

ηi!

(2ηi − 1)!!
2ηi

)−1

(30)

The self-duality function corresponding to S of (29) and Q of (30) then reads

D(η1η2, ξ1ξ2) = D1(η1, ξ1)D2(η2, ξ2)

Di(ηi, ξi) = Q−1(ηi, ηi)Si(ηi, ξi) = 2ξi
ηi!

(ηi − ξi)!(2ξi − 1)!!
(31)
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3.4 Self-duality for independent random walkers

This is a classical example which is included here for the sake of completeness. We have two

site 1 and 2, and particles hop independently from 1 to 2 and from 2 to 1 at rate one. So the

rate to put a particle from 1 to 2 in a configuration with η1 particles at 1 and η2 particles

at 2 is simply η1. The generator is given by the matrix

L(η1η2, η
′
1η

′
2) = η2δη1,η′

1−1δη2,η′
2+1 + η1δη1,η′

1+1δη2,η′
2−1 + (−η1 − η2)δη1,η′

1
δη2,η′

2

A self-duality function is D = D1 ⊗D2 with

D(ηi, ξi) =
ηi!

(ηi − ξi)!

The invariant measures are product of Poisson distributions and a possible conjugation is

thus given by Q = Q1 ⊗Q2 with

Qi(ηi, ξi) = δηi,ξi

1

ηi!

As a consequence, a symmetry of the generator is given by S = S1 ⊗ S2 with

Si(ηi, ξi) = (DiQi)(ηi, ξi) =
1

(ηi − ξi)!
(32)

This symmetry comes once more from an underlying structure of creation and annihilation

operators satisfying the Heisenberg algebra. Indeed, if one defines for i ∈ {1, 2} operators

a+
i and a−i which are represented on an Hilbert space with basis |0〉, |1〉, |2〉, . . . by operators

working as

a+
i |ηi〉 = |ηi + 1〉
a−i |ηi〉 = ηi|ηi − 1〉 (33)

then one easily verifies the commutation relation

[a−i , a
+
i ] = 1i .

In terms of these matrices, the transposed of the generator reads

LT = −(a+
1 ⊗ 12 − 11 ⊗ a+

2 )(a−1 ⊗ 12 − 11 ⊗ a−2 ) (34)

which commutes with a+ = a+
1 ⊗ 12 + 11 ⊗ a+

2 . The symmetry S in (32) is then recognized

as S = exp(a+
1 ) ⊗ exp(a+

2 ).

13



3.5 Duality between independent random walkers and a deterministic sys-

tem

As an example of application of Theorem 2.10 we consider again a system of independent

random walkers jumping between sites 1 and 2. We show that this system is dual to a

deterministic system evolving according to ordinary differential equations.

We consider the “abstract” operator L

L = −(a+
1 − a+

2 )(a−1 − a−2 ) (35)

where a+
i , a

−
j are operators satisfying the canonical commutation relations

[a−i , a
+
j ] = δi,j1 . (36)

One way to represent the previous operator is by considering

a−i =
∂

∂xi
, a+

i = xi, i ∈ {1, 2}

which obviously satisfy (36). In this case the operator (35) takes the form

L = −(x1 − x2)

(

∂

∂x1
− ∂

∂x2

)

which is the generator of the deterministic system of differential equations

dx1(t)

dt
= −(x1(t) − x2(t))

dx2(t)

dt
= (x1(t) − x2(t)) (37)

with solutions

x1(t) =
x1(0) + x2(0)

2
+
x1(0) − x2(0)

2
e−2t

x2(t) =
x1(0) + x2(0)

2
− x1(0) − x2(0)

2
e−2t (38)

Another possible way to represent the operator (35) has just been seen in the previous

paragraph. In this case the creation and annihilation operators are represented as matrices

with elements given by (33) and then the operator (35) can be seen as the transposed of the

generator for a system on independent random walkers

LT
dual = −(a+

1 ⊗ 12 − 11 ⊗ a+
2 ) ◦ (a−1 ⊗ 12 − 11 ⊗ a−2 ) .

14



It is immediately checked that the function

D(x, ξ) = D(x1, ξ1)D(x2, ξ2)

with

D(xi, ξi) = xξi

i

gives a conjugation between L and LT
dual, namely

LD(x, ξ) = DLT
dual(x, ξ)

In this case, this relation reads more explicitely,

−(x1 − x2)

(

∂

∂x1
− ∂

∂x2

)

(xn1
1 xn2

2 )

= n1x
n1−1
1 xn2+1

2 + n2x
n1+1
1 xn2−1

2 − (n1 + n2)x
n1
1 xn2

2 (39)

This implies that x(t) and ξ(t) are each other dual with duality function D and the

following relation holds

x1(t)
ξ1x2(t)

ξ2 = Eξ1,ξ2(x1(0)
ξ1(t)x2(0)

ξ2(t)) (40)

where the expectation in the rhs is over the independent random walkers starting from initial

configuration with η1 particles at 1 and η2 particles at 2. We will come back to this example

in section 6.4.

Remark 3.1. In the last example, we can still use other representations of the operators

a−i , a
+
i , satisfying the commutation relation [a−i , a

+
j ] = δij , such that the abstract operator

(35) is the generator of a Markovian diffusion process. E.g., if we choose

a+
i = − ∂

∂xi
+ xi

a−i =
∂

∂xi
(41)

then the abstract operator (35) reads

L =

(

∂

∂x1
− ∂

∂x2

)2

+ (x1 − x2)

(

∂

∂x1
− ∂

∂x2

)

15



which is the generator of the (degenerate) diffusion: the “coordinate (x1 − x2)/2 undergoes

a Brownian motion and (x1 + x2)/2 remains constant. So in that case we also have duality

Ex1,x2(D(x1(t), n1)D(x2(t), n2)) = En1,n2(D(x1, n1(t))D(x2, n2(t)))

where D(x, n) can be found by the recursion

D(x, n + 1) = a+D(x, n)

e.g. the first five polynomials are

D(x, 0) = 1,D(x, 1) = x,D(x, 2) = x2 − 1,D(x, 3) = −3x+ x3,D(x, 4) = 3 − 6x2 + x4

4 Symmetric exclusion processes

In this section we study the 2j-SEP (with j ∈ N/2), i.e. exclusion processes with at most

2j particles per site, on a graph S. We show how we can understand self-duality for the

2j-SEP from “classical duality” (in the sense of [8]) of the symmetric exclusion process on

special graphs. We also consider two limits j → ∞ leading to a deterministic process or a

system of independent random walkers. Finally, we consider the boundary driven case, and

show that we have a dual with absorbing boundaries.

4.1 Symmetric exclusion on ladder graphs

Consider a countable set S, to be thought of as the underlying lattice, and a finite set I with

cardinality 2j ∈ N. The set I is to be thought of as a “ladder” on each site with 2j levels.

The state space of SEP on the ladder graph S × I is Ω = {0, 1}S×I . A configuration

ζ ∈ Ω is called finite if it contains a finite number of particles, i.e., if
∑

i∈S,α∈I ζ(i, α) <∞.

The process is described as follows. Let p(i, l) denote a symmetric random walk kernel on

S, i.e., p(i, l) = p(l, i) ≥ 0,
∑

l∈S p(i, l) = 1. At each site i ∈ S and level α ∈ I, there is at

most one particle. Each particle attempts to jump at rate p(i, l) to a site l ∈ S and level

β ∈ I.

More formally, the SEP on a ladder graph S×I is the process with the following generator

on local functions f : Ω → R

Lf(ζ) =
∑

i,l∈S

∑

α,β∈I

p(i, l)(ζ(i, α)(1 − ζ(l, β))(f(ζ(i,α),(l,β)) − f(ζ)) (42)
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where ζ(i,α),(l,β) denotes the configuration obtained from η by removing a particle at site i

level α and placing it at site l level β. Since this process is a symmetric exclusion process

on a special graph, then it is self-dual in the following sense:

Proposition 4.1. Define for ζ, ζ̃ ∈ Ω, ζ̃ finite,

D(ζ, ζ̃) =
∏

i,α:ζ̃(i,α)=1

ζ(i, α)

then we have the duality relation from [8]

EζD(ζt, ζ̃) = Eζ̃D(ζ, ζ̃t) (43)

where ζt, ζ̃t are independent copies of the ladder SEP with generator (42) starting from ζ,

resp. ζ̃.

4.2 From the ladder SEP to the 2j-SEP

To define the 2j-SEP on a graph S we consider, for a given SEP on a ladder graph S × I
with 2j levels, the process which consists of giving at time t > 0, and each site i ∈ S the

number of levels (i, α) which are occupied in ζt. More precisely, define the map π : Ω →
Ω(j) = {0, 1, . . . , 2j}S

ζ 7→ π(ζ) = η with ηi =
∑

α∈I

ζ(i, α) (44)

Then we have the following theorem.

Theorem 4.2. Let ζt be the ladder sep with generator (42). Then the following holds:

a) ηt = π(ζt) is a Markov process on Ω(j) with generator

L(j)f(η) =
∑

i,l∈S

p(i, l)ηi(2j − ηl)(f(ηi,l) − f(η)) (45)

This process will be called the 2j-SEP or reduced ladder SEP with 2j levels.

b) The process ηt with generator L(j) is self-dual with duality function

D(η, ξ) =
∏

i∈S

(

ηi

ξi

)

(

2j
ξi

) (46)
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for ξ ≤ η a configuration with a finite number of particles (D is defined to be zero in

other cases). More precisely, we have

EηD(ηt, ξ) = EξD(η, ξt) (47)

c) The extremal invariant measures are of the form

ν(j)
ρ = ⊗i∈SBin(2j, ρi)

where ρi is harmonic for p(i, l), i.e., such that

∑

l

p(i, l)ρl = ρi

In particular, if the only bounded harmonic functions are constants, then the only

extremal invariant measures are products of binomials with constant density.

Proof. For point (a) remark that the jump rates in the generator (45) only depend on the

number of particles at a site, and not on the levels. Therefore, if f : Ω → R depends on ζ

only through η = π(ζ), i.e., if f(ζ) = ψ(π(ζ)) = ψ(η), then

Lf(ζ) = L(j)ψ(η) (48)

Therefore, for every local function ψ : Ω(j) → R,

ψ(π(ζt)) − ψ(π(ζ0)) −
∫ t

0
L(j)(ψ)(π(ζs))ds = Mt (49)

is a martingale w.r.t. the filtration Ft = σ{π(ζ)s : 0 ≤ s ≤ t}. This shows that π(ζt) is

a solution of the martingale problem associated to the generator L(j), and hence coincides

with the unique Markov process generated by L(j) (see Th. 4.1, page 182, of [4]).

Now we turn to point (b). At each site i ∈ S we choose ξi levels at random. For a

given configuration η ∈ Ωj, we choose ζ ∈ Ω consistent, i.e., such that π(ζ) = η. Then the

probability (w.r.t. to the random choices) that all chosen levels are occupied in ζ is exactly

equal to D(η, ξ). As π(ζt) = ηt, the probability that the chosen levels are occupied at time

t (i.e., in ζt) is given by EηD(ηt, ξ). By self-duality of the ladder SEP (Prop. 4.1), the event

that at time t > 0 the chosen levels are occupied is the same as the probability that the

particles evolving from the chosen levels during a time t find themselves at positions which

are occupied in ζ. The latter probability equals EξD(ξt, η).
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Point c) follows from the fact that for the ladder SEP with generator (42), the product

Bernoulli measures indexed by harmonic functions of p(i, j) are the extremal invariant mea-

sures ( see [8] for details) and the image measure of a product of Bernoulli measure under π

is a product of Binomial measures.

4.3 Limiting processes as j → ∞

In this section we show that for large j the 2j-SEP converges, when considered on an ap-

propriate time scale, either to a system of independent random walkers or to a deterministic

limit, depending on the initial density. We remind the reader that for independent random

walkers on a graph S, the configuration space is Ω∞ = N
S and the generator is given by

Lirwf(η) =
∑

i,l∈S

η(i)p(i, l)(f(ηi,l) − f(η)) (50)

The stationary measures are products of Poisson measures, and the process with generator

(50) is self-dual with self-duality function

Dirw(η, ξ) =
∏

i∈S

ηi!

(ηi − ξi)!
(51)

for finite configurations ξ ≤ η, and D = 0 otherwise.

The relation with the reduced ladder SEP for large j is given in the following theorem.

Theorem 4.3. Consider the process {η(j)
t : t ≥ 0} with generator (45) started from initial

configuration η(j) ∈ Ω(j). Suppose that, as j → ∞, η(j) → η ∈ Ω∞, then the process

{η(j)
t/2j : t ≥ 0} converges weakly in path space to a system of independent random walkers

with generator (50) and initial configuration η.

Proof. The process {η(j)
t/2j : t ≥ 0} has generator

L′
j =

1

2j
L(j) (52)

In order to have a sequence of processes all defined on the same sample space Ω(∞) we

consider the auxiliary process on N
S with generator

L′′
j f(η) =

∑

i,l∈S

p(i, l)ηi

(

1 − ηl

2j

)

I(ηi ≤ 2j)I(ηl ≤ 2j)
(

f(ηi,l) − f(η)
)

(53)

19



This auxiliary process behaves as the process with generator L′
j except for sites which have

more than 2j particles, which are frozen. Started from an initial configuration with all sites

having at most 2j particles, this process coincides with the process ηt/2j . For any local

function f : N
S → R, we then have

lim
j→∞

L′′
j f(η) = lim

j→∞

∑

i,l∈S

p(i, l)ηi

(

1 − ηl

2j

)

I(ηi ≤ 2j)I(ηl ≤ 2j)
(

f(ηi,l) − f(η)
)

= Lirwf(η) (54)

Therefore, by the Trotter-Kurtz theorem (see Theorem 2.5 of [4]), this implies that the

corresponding processes ηt/2j converge weakly on path space as j → ∞ to the process with

generator Lirw.

To see that (51) is (up to a multiplicative consant) a limit of duality functions of the

2j-SEP, we start from the symmetry (22) and use the similarity transformation with Q(j)

given by

Q(j)(η, ξ) =
∏

i∈S

Q
(j)
i (ηi, ξi)

with

Q
(j)
i (ηi, ξi) = δηi,ξi

(

2j

ηi

)(

1

2j

)ηi
(

1 − 1

2j

)2j−ηi

Then the duality functions

D̃(j) = Q(j)−1
S

with S defined in (32), satisfy

lim
j→∞

D̃(j) = eDirw .

Another possible limit is obtained when the initial condition has a number of particles

that diverges proportional to j. This limit, as can be understood from the law of large

numbers, is deterministic.

Theorem 4.4. Consider the process

x
(j)
i (t) =

η
(j)
t/2j

2j
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and suppose that x
(j)
i (0) → xi(0) ∈ [0, 1] for all i ∈ S as j → ∞. Then we have that x

(j)
i (t)

converges to a deterministic system of coupled differential equations with generator

Lf(x) =
∑

i,l∈S

p(i, l)xi(1 − xl)

(

∂

∂xl
− ∂

∂xi

)

(55)

Proof. The generator of the process x
(j)
i (t) reads

L′
jf(x) = 2j

∑

i,l

p(i, l)xi(1 − xl)(f(x(j);i,l) − f(x(j)))

where x(j),i,l arises from x(j) by removing a unit 1/2j from i ∈ S and putting it at l ∈ S.

Therefore, for a local smooth function f : [0, 1]S → R we have, by Taylor expansion

L′
jf(x) =

∑

i,l

p(i, l)xi(1 − xl)

(

∂

∂xl
− ∂

∂xi

)

f(x) +O

(

1

2j

)

The result then follows once more from the Trotter Kurtz theorem. Since the limiting

generator is a first order differential operator, the corresponding process is deterministic.

4.4 Boundary driven case

We first discuss a duality theorem for standard (i.e. j = 1/2) symmetric exclusion with extra

creation and annihilation of particles at the boundary. The context is a countable set S, of

which we distinguish a subset ∂S ⊂ S called the boundary. We then consider the generator

Lf(η) =
∑

i,l∈S

p(i, l)(η(i)(1 − η(l))(f(ηi,l) − f(η))

+
∑

i∈∂S

(1 − ρi)η(i)
(

f(ηi) − f(η)
)

+ ρi(1 − η(i))
(

f(ηi) − f(η)
)

(56)

where 0 < ρi < 1 represent the densities of the particle reservoirs with which the system

is in contact at the boundary sites, and where ηi is the configuration obtained from η by

flipping the occupancy at i.

The first part of the generator represents the hopping of particles on S according to a

symmetric exclusion process, whereas the second part represents creation and annihilation

of particles at the boundary sites.

To introduce duality for this process, we introduce a set ∂eS of sink sites, and a bijection

i 7→ ie which associates each site i ∈ ∂S to a sink site. The dual process will then be a
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process that behaves as the exclusion process in the bulk, but particles can leave the system

via boundary sites to sink sites, and will then be stuck at sink sites. More precisely, a

configuration of the dual process is a map

ξ : S ∪ ∂eS → N

such that ξ(i) ∈ {0, 1} for i ∈ S (only the sink sites can contain more than one particle).

We call Ωdual the set of all configurations of the dual process.

The duality function is defined as follows: for η ∈ {0, 1}S , ξ ∈ Ωdual

D(η, ξ) =





∏

i∈S:ξ(i)=1

η(i)









∏

i∈∂eS

ρξi

i



 (57)

The idea here is that we have the ordinary duality function for the sites i ∈ S and for the

sink sites, we replace the variable ηi by its expectation ρi, corresponding to the stationary

measure of the boundary generator Li.

The generator of the dual process is then defined as follows:

Ldualf(ξ) =
∑

i,l∈S

p(i, l)(ξ(i)(1 − ξ(l))(f(ξi,l) − f(ξ)) +
∑

i∈∂S

ξ(i)
(

f(ξi,ie) − f(ξ)
)

(58)

We then have

Theorem 4.5. The boundary driven exclusion process (ηt)t≥0 with generator L in (56) and

the process (ξt)t≥0 with generator Ldual in (58) are dual with duality function D(η, ξ) given

by (57), i.e.,

EηD(ηt, ξ) = EξD(η, ξt) (59)

Proof. Abbreviate

Lif(η) = (1 − ρi)η(i)
(

f(ηi) − f(η)
)

+ ρi(1 − η(i))
(

f(ηi) − f(η)
)

(60)

and

Ldual
i f(ξ) = ξ(i)

(

f(ξi,ie) − f(ξ)
)

(61)

For f(η) = η(i) one sees that

Lif(η) = ρi − η(i) (62)

22



and hence for ξ a dual configuration which is non-zero only on the sites i ∈ ∂S and on the

corresponding sink site ie ∈ ∂eS, we find

LiD(η, ξ) = ρ
ξie

i (Li (η(i)ξ(i) + (1 − ξ(i))))

= ξ(i)ρ
ξie

i (ρi − η(i))

= ξ(i)
(

ρ
ξie+1
i − ρ

ξie

i η(i)
)

= Ldual
i D(ξ, η)

From that and the self-duality of the symmetric exclusion process, it follows that

LD(η, ξ) = LdualD(η, ξ) (63)

In order to apply this duality result for the boundary driven process with generator (45),

we first look at the boundary driven exclusion process on a ladder graph. More precisely,

for ζ ∈ {0, 1}S×I we consider the process (ζt)t≥0 with generator

Lf(ζ) =
∑

i,l∈S

∑

α,β∈I

p(i, l)(ζ(i, α)(1 − ζ(l, β))(f(ζ(i,α),(l,β)) − f(ζ)) (64)

+
∑

i∈∂S

∑

α∈I

(1 − ρi)ζ(i, α)
(

f(ζ(i,α)) − f(ζ)
)

+ ρi(1 − ζ(i, α))
(

f(ζ(i,α)) − f(ζ)
)

In words, this process is the ladder SEP, with additional boundary driving, where the creation

and annihilation rate of particles at the boundary sites does not depend on the level. If we

consider the reduced process, consisting of counting at each site i ∈ S how many levels in

I are occupied, i.e. ηt = π(ζt) then we recover once again a Markov process (cfr. Theorem

4.2). This process, defined on the state space Ω(j) = {0, 1, . . . 2j}S and called the boundary

driven 2j-SEP, has generator

Ljf(η) =
∑

i,l∈S

p(i, l)(η(i)(2j − η(l))(f(ηi,l) − f(η))

+
∑

i∈∂S

(1 − ρi)η(i)
(

f(η(i,α)) − f(η)
)

+ ρi(2j − ηi)
(

f(ηi) − f(η)
)

(65)

It turns out that the boundary driven 2j-SEP has a nice dual too. To introduce this dual,

we consider admissible dual configurations as maps ξ : S ∪ ∂eS → N such that 0 ≤ ξ(i) ≤ 2j
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for i ∈ S (only the sink sites can contain more that 2j particles). The generator of the dual

of the boundary driven 2j-SEP is a process on admissible dual configurations, defined by

Ldual
j f(ξ) =

∑

i,l∈S

p(i, l)(ξ(i)(2j − ξ(l))(f(ξi,l) − f(ξ))

+
∑

i∈∂S

ξ(i)
(

f(ξi,ie) − f(ξ)
)

(66)

From Theorem 4.5 we then infer, in the same way as we derived Theorem 4.2 the following.

Theorem 4.6. Let (ηt)t≥0 denote the boundary driven 2j-SEP with generator (65). Then

(ηt)t≥0 is dual to the process (ξt)t≥0 with generator (66) with duality function given by

D(η, ξ) =
∏

i∈∂eS

ρξi

i

∏

i∈S

(ηi

ξi

)

(2j
ξi

) (67)

Proof. Denote for i ∈ ∂S,

Lif(η) = (1 − ρi)η(i)
(

f(η(i,α)) − f(η)
)

+ ρi(2j − η(i))
(

f(ηi) − f(η)
)

and

Ldual
i f(ξ) = ξ(i)

(

f(ξi,ie) − f(ξ)
)

One then easily computes that for ξ a dual configuration which is non-zero only on the sites

i ∈ ∂S and on the corresponding sink site ie ∈ ∂eS,

LiD(η, ξ) = ρ
ξie

i

1
(2j

ξi

)Li

((

ηi

ξi

))

= ρ
ξie

i

1
(

2j
ξi

)

[

(1 − ρi)ηi

((

ηi − 1

ξi

)

−
(

ηi

ξi

))

+ (2j − ηi)ρi

((

ηi + 1

ξi

)

−
(

ηi

ξi

))]

= ξi(ρ
ξie+1
i − ρi)

(ηi

ξi

)

(2j
ξi

) = Ldual
i D(η, ξ)

The result then follows from combination of this fact and the duality relation (47).

5 The Brownian Momentum Process and SU(1, 1) symmetry

In this section we study the Brownian momentum process that was introduced in [5, 2].

We will recover duality [6] in the context of our main Theorems and study the reversible

measures of the dual process.
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5.1 Generator and Quantum spin chain

Let S be a countable set and p(i, j) a symmetric random walk transition probability on S.

The Brownian momentum process is a Markov process (xt)t≥0 on R
S , with generator

L =
∑

i,j∈S

p(i, j)Lij (68)

where

Lij =

(

xi
∂

∂xj
− xj

∂

∂xi

)2

(69)

and p(i, j) is a symmetric random walk kernel on S.

The generator Lij conserves the energy x2
i + x2

j and generates a Brownian rotation of

the angle θij = arctan(xj/xi). The interpretation of the generator (68) is then as follows:

each bond independently, at rate p(i, j) undergoes a Brownian rotation of its angle θij =

arctan(xj/xi). An important example to keep in mind is S = Z
d, and p(i, j) the nearest

neighbor symmetric random walk.

The processes with generator L can be related to quantum spin chains [6]. Consider the

operators

K+
i =

1

2
x2

i

K−
i =

1

2

∂2

∂x2
i

K0
i =

1

4

(

∂

∂xi
(xi·) + xi

∂

∂xi

)

(70)

which satisfy the commutation relations of SU(1, 1):

[K0
i ,K

±
i ] = ±K±

i

[K−
i ,K

+
i ] = 2K0

i (71)

Then the negative of the adjoint of the generator L can be seen as the quantum “Hamilto-

nian”

H = −L∗ = −4
∑

ij∈S

p(i, j)

(

K+
i K

−
j +K−

i K
+
j − 2K0

i K
0
j +

1

8

)

(72)

with spin satisfying the SU(1, 1) algebra (in a representation with spin value 1/4).
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5.2 Dual process

In [6] we showed that the process with generator L in (68) and (69) has a dual, which is a

system of interacting random walkers on S. We show here how this dual process comes out

of the structure of the Hamiltonian (72).

We notice that the SU(1, 1) group admits a discrete (infinite dimensional) representation

as (unbounded) operators on l2(N):

K+
i |ξi〉 =

(

1

2
+ ξi

)

|ξi + 1〉

K−
i |ξi〉 = ξi|ξi − 1〉

K0
i |ξi〉 =

(

ξi +
1

4

)

|ξi〉 (73)

where i ∈ S and ξi ∈ N and |0〉, |1〉, |2〉, . . . denotes the canonical basis on l2(N). It is imme-

diately checked that the (unbounded) operators in (73) satisfy the SU(1, 1) commutation

relations in (71). We then define a new generator via the same Hamiltonian as in (72), but

now in the representation (73):

Hdual = −L∗
dual = −4

∑

ij∈S

p(i, j)

(

K+
i K−

j + K−
i K+

j − 2K0
i K0

j +
1

8

)

(74)

From the previous equation and using the representation (73) we deduce that the Hamilto-

nian above defines a Markov process (ξt)t≥0 with state space N
S and generator

Ldual =
∑

i,j∈S

p(i, j)Ldual
ij (75)

where

Ldual
ij f(ξ) = 2ξi(2ξj + 1)(f(ξi,j) − f(ξ)) +

2ξj(2ξi + 1)(f(ξj,i) − f(ξ)) (76)

with ξi,j the configuration obtained from ξ by removing a particle from i and putting it at j.

Note that, in general, changing a representation does not imply that a generator continues

to be a generator: the fact that H and Hdual are well-defined as a Hamiltonian is conserved

by similarity transformations (change of representation) but their property of being (minus)

the adjoint of the generator of a Markov process is dependent on the representation, and

needs to be verified by hand.
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5.3 The duality function explained

In [6] we found that L and Ldual are dual processes, with duality function

D(x, ξ) =
∏

i∈S

Di(xi, ξi) (77)

with

Di(xi, ξi) =
x2ξi

i

(2ξi − 1)!!
(78)

We now show how these functions arise from the change of representation. Suppose that we

find a function

C = C(x, ξ) =
∏

i∈S

Ci(xi, ξi)

such that

Ka
i Ci = CiKa

i (79)

for a ∈ {+,−, 0}, i ∈ S and Ka
i , resp. Ka

i defined in (70), (73). The “matrix product” in the

lhs of (79) is defined as the differential operator Ka
i working on the xi-variable of Ci(xi, ξi),

and in the rhs CiKa
i (xi, ξi) =

∑

ξ′i
C(xi, ξ

′
i)Ka

i (ξ
′
i, ξi).

Then for the generators L in (68),(69) and the generator Ldual in (75), (76) we find, as

a consequence of (79) and using that L∗ = L,

LC = L∗C = CL∗
dual (80)

i.e., such a function C is a duality function (cfr. (6)).

The equation (79) is most easy of a = +, it then reads

1

2
x2

iCi(xi, ξi) =

(

1

2
+ ξi

)

Ci(xi, ξi + 1) (81)

To find Ci(xi, 0) we use K−
i Ci(xi, 0) = 0 (that follows from (73), (79)) so we can choose

Ci(xi, 0) = 1 and then find, via (81)

Ci(xi, ξi) =
x2ξi

i

(2ξi − 1)!!
(82)

which is exactly the duality function that we found in [6]. It is then easy to verify that (79)

is also satisfied for a ∈ {−, 0} with the choice (82).
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5.4 Reversible measures of the dual-BEP

The dual of the BEP, with generator Ldual in (75) and (76), is in itself an interacting

particle system (particles attract each other), and it can therefore be considered as a model

of independent interest. In some sense, it can be viewed as “the bosonic counterpart” of the

SEP. Surprisingly, despite the interaction, the process has reversible product measures, as

is shown below. Remark that, due to the attractive interaction between the particles, this

process does not fall in the class of “misantrope processes” considered in [1], [3] (where one

also has in particular cases stationary product measures, despite interaction).

Theorem 5.1. Consider, for λ < 1/2 the translation invariant product measure νλ on N
S

with marginals

νλ(η0 = k) =
1

Zλ

(2k − 1)!!

k!
λk (83)

where the normalization is

Zλ =

∞
∑

k=0

(2k − 1)!!

k!
λk =

1
√

(1 − 2λ)
. (84)

Then νλ is reversible for the process with generator Ldual in (75) and (76).

Proof. From the generator (75), (76), we infer that

αiαj2i(2j + 1) = 2(j + 1)(2i − 1)αj+1αi−1

is a sufficient condition for detailed balance of a product measure µ with marginals µ(η0 =

k) = αk for the generator Ldual
ij , which is sufficient for detailed balance for Ldual. This leads

to
αj+1

αj
=

2j + 1

2j + 2
(2c)

for some positive constant c. This in turn gives

αj =
(2j − 1)!!

j!
(2c)jα0

which is (83). The explicit expression for Zλ can be obtained easily from the identity
∫ ∞

−∞
x2ke−x2/2dx =

√
2π(2k − 1)!!
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6 The Brownian Energy Process

As it was done for SEP, it is interesting to consider the Brownian Momentum Process on

ladder graph S ×I with |I| = m ∈ N levels and look at the induced process which gives the

energy at each site.

6.1 Generator

Consider the generator, working on local functions f : R
S×I → R

L =
∑

i,j∈S

m
∑

α,β=1

p(i, j)Liα,jβ (85)

where

Liα,jβ =

(

xi,α
∂

∂xj,β
− xj,β

∂

∂xi,α

)2

. (86)

In this section we show that for the process with the generator above, the total energy per

site defined via

zi =

m
∑

α=1

x2
i,α (87)

is again a Markov process

Theorem 6.1. Consider the process x(t) = (xi,α(t))i∈S,α=1,...,m with generator L of (85)

and (86). Consider the corresponding process z(t) = (zi(t))i∈S defined via the mapping (87).

This is a Markov process on R
S
+ with generator

L(m) =
∑

ij∈S

p(i, j)L
(m)
ij (88)

with

L
(m)
ij = 4zizj

(

∂

∂zi
− ∂

∂zj

)2

− 2m(zi − zj)

(

∂

∂zi
− ∂

∂zj

)

(89)

and with stationary measures which are product measures with chi-squared marginals.

Proof. Denote π : (xi,α)i∈S,α=1,...,m 7→ (zi)i∈S . Denote by ∂i partial derivative w.r.t. zi and

by ∂i,α partial derivative w.r.t. xi,α. Then, using the identities

∂i,α = 2xi,α∂i

∂2
i,α = 2∂i + 4x2

i α∂
2
i

∂i,α∂j,β = 4xi,αxj,β∂i∂j (90)
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we find for a function f : R
S×I → R depending on x only through z = π(x)

Lf ◦ π(x) = (L(m)f)(π(x)) (91)

The proof then proceeds via the martingale problem as in the proof of Theorem 4.2. The

stationary measure of the process with generator L(m) is deduced from the knowledge of the

stationary measure for the process with generator L. Indeed, it is easy to check that for the

process xi,α(t), products of Gaussian measures ⊗i∈S1,αN(0, σ2) are invariant and ergodic.

The image measure under the transformation π(x) = z are products ⊗i∈S1χ
2
m(σ) where for

σ = 1, χ2
m(1) is the chi-squared distribution with m degrees of freedom, and for general σ,

follows from scaling χ2
m(σ2) = σ2χ2

m(1).

6.2 Duality

In this section we show that the BEP defined above has a dual process which is again a jump

process.

To construct the dual we follow a procedure similar to the one of the previous section.

Remark that the generator L in (85) and (86) can be written in terms of the operators

K
a,(m)
i =

m
∑

α=1

Ka
i,α (92)

with a ∈ {+,−, 0}, where

K+
i,α =

1

2
x2

i,α

K−
i,α =

1

2

∂2

∂x2
i,α

K0
i,α =

1

4

(

∂

∂xi,α
(xi,α·) + xi,α

∂

∂xi,α

)

(93)

In other words L is related to a quantum spin chain with Hamiltonian

H(m) = −L∗ = −4
∑

ij∈S

p(i, j)

(

K
+,(m)
i K

−,(m)
j +K

−,(m)
i K

+,(m)
j − 2K

0,(m)
i K

0,(m)
j +

m2

8

)

(94)
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where the K-operators in (92) and (93) satisfy the commutation relations of SU(1, 1). More-

over the K operators defined in (92), (93), can be rewritten in z-variables as follows:

K
+,(m)
i =

1

2
zi

K
−(m)
i = 2zi∂

2
i +m∂i

K
0,(m)
i = zi∂i +

m

4
(95)

The generator L(m) of (88) is then simply minus the adjoint of the Hamiltonian H(m) in

(94), rewritten with K-operators in z-variables.

At this point it is important to remark that the SU(1, 1) group admits a family of discrete

infinite dimensional discrete representation labeled by m ∈ N given by

K+,(m)
i |ξi〉 =

(m

2
+ ξi

)

|ξi + 1〉

K−,(m)
i |ξi〉 = ξi|ξi − 1〉

K0,(m)
i |ξi〉 =

(m

4
+ ξi

)

|ξi〉 (96)

where i ∈ S and ξi ∈ N and |0〉, |1〉, |2〉, . . . denotes the canonical basis on l2(N). We then

define a new generator via the same Hamiltonian as in (94), but now in the representation

(96):

H
(m)
dual = −L∗

dual = −4
∑

ij∈S

p(i, j)

(

K+,(m)
i K−,(m)

j + K−,(m)
i K+,(m)

j − 2K0,(m)
i K0,(m)

j +
m2

8

)

(97)

Using the representation (96) we deduce that the Hamiltonian above defines a Markov process

(ξt)t≥0 with state space N
S and generator

L
(m)
dual =

∑

i,j∈S

p(i, j)L
(m),dual
ij (98)

where

L
(m),dual
ij f(ξ) = 2ξi(2ξj +m)(f(ξi,j) − f(ξ)) +

2ξj(2ξi +m)(f(ξj,i) − f(ξ)) (99)

The duality function are given in the following theorem.
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Theorem 6.2. The processes with generator L(m) and L
(m)
dual are each others dual, with

duality function

D(z, ξ) =
∏

i∈S

Di(zi, ξi) (100)

where

Di(zi, ξi) = zξi

i

Γ
(

m
2

)

2ξiΓ
(

m
2 + ξi

) (101)

with Γ(t) =
∫∞
0 xt−1e−xdx the gamma function.

Proof. Let

Ci(zi, ξi) = zξi

i

Γ
(

m
2

)

2ξiΓ
(

m
2 + ξi

)

One verifies easily that

K
a,(m)
i Ci = CiKa,(m)

i

for a = +,−, 0. The proof then continues as in section 5.3.

6.3 The instantaneous thermalization limit and the KMP process

In the KMP model, introduced in [7], the energies Ei of different sites i ∈ S are updated

by selecting a pair of lattice sites (i, j) and uniformly redistributing the energy under the

constraint of conserving Ei + Ej . In this section we show that the KMP model arises by

taking what we call here an instantaneous thermalization limit of the process with generator

L(m), for the case m = 2.

We start by computing the stationary measure of the process with generator L
(m)
ij .

Lemma 6.3. Let (zi(t), zj(t)) be the Markov process with generator L
(m)
ij , starting from

an initial condition (zi(0), zj(0)) with zi(0) + zj(0) = E. Then in the limit t → ∞ the

distribution of (zi(t), zj(t)) converges to the distribution of the couple ((E + ǫ)/2, (E − ǫ)/2)

where ǫ has probability density

f(ǫ) = Cm(E2 − ǫ2)
m
2
−1 (102)

−E ≤ ǫ ≤ E and f = 0 otherwise, and where Cm is the normalizing constant.
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Proof. Define (E(t), ǫ(t)) = (zi(t)+ zj(t), zi(t)− zj(t)). Then simple rewriting of L
(m)
ij in the

new variables yields that (E(t), ǫ(t)) is a Markov process with generator

L′ = 4(E2 − ǫ2)∂2
ǫ − 4mǫ∂ǫ (103)

From the form of L′ we see immediately that E is conserved and that for given E, ǫ(t) is an

ergodic diffusion process with stationary measure solving

∂2
ǫ (4(E2 − ǫ2)f) + ∂ǫ(4mǫf) = 0 (104)

Now notice that the rhs of (102) solves

∂ǫ(4(E
2 − ǫ2)f) + (4mǫf) = 0

and hence (104).

Denote by γm the distribution of ((E + ǫ)/2, (E − ǫ)/2). We can now define what me

mean by instantaneous thermalization.

Definition 6.4. Let f : [0,∞)S → R. For e = (ei)i∈S a configuration of energies, (i, j) ∈
S ×S, (e′i, e

′
j) ∈ [0,∞)× [0,∞) we denote by t(e, e′i, e

′
j) the configuration obtained from e by

replacing ei by e′i and ej by e′j. The instantaneous thermalization of a pair (i, j) ∈ S × S is

defined by

T (m)
ij f(e) =

∫

f(t(e, e′i, e
′
j))dγm(e′i, e

′
j) (105)

The instantaneously thermalized version of the Brownian energy process is then defined

as the process with generator

LIT
m f(e) =

∑

ij∈S

p(i, j)(T (m)
ij f(e) − f(e)) (106)

This means that with rate p(ij) a pair (i, j) ∈ S × S is chosen and the energy is instanta-

neously thermalized according to the measure γm. From (102) one sees that, for m = 2, the

uniform redistribution of the KMP model is recovered.

It is interesting to consider the dual of the instantaneous thermalization process for

general m ∈ N. From the previous discussion one knows that in the case m = 2 this is

just the dual of the KMP model. However, the model with generator has for general m a

dual with different duality functions as is shown in Theorem 6.6 below. To introduce this
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dual, we remind the reader that the Brownian energy process with generator L(m) is dual

to the discrete particle jump process with generator L
(m)
dual. The following lemma gives the

stationary measure of the dual BEP, which is needed in the construction of the instantaneous

thermalized version of the dual BEP.

Lemma 6.5. Let (kt, lt) evolve according to the generator Lij
dual, and suppose that initially

k0 + l0 = N , then in the limit t→ ∞, (kt, lt) converges in distribution to ((N + ∆)/2, (N −
∆)/2) where ∆ has distribution µ on {−N,−N + 2, . . . , N} with

µ(∆)

µ(∆ − 2)
=

(N − ∆ + 1)(N + ∆ − 1 +m)

(N + ∆)(N − ∆ +m)
(107)

In particular for m = 2, (kt, lt) converges to the uniform measure on the set {(a, b) ∈
{0, . . . , N} : a+ b = N}.

Proof. The process (Nt,∆t) := (kt + lt, kt − lt) performs transitions (N,∆) → (N,∆− 2) at

rate 1
4 (N + ∆)(N − ∆ +m) and (N,∆) → (N,∆ + 2) at rate 1

4(N − ∆)(N + ∆ +m). The

marginal ∆t is then an irreducible continuous-time Markov chain on the set {−N,−N +

2, . . . , N}, and hence has a unique stationary measure. Since it is a pure birth and death

chain, this measure is also reversible. The recursion (107) then follows from detailed balance.

We denote by γ̂m(k, l) the stationary distribution of lemma (6.5). For ξ ∈ N
S , and

(i, j) ∈ S × S, (ξ′i, ξ
′
j) ∈ N × N we denote by t(ξ, ξ′i, ξ

′
j) the configuration obtained from ξ by

replacing the value at i by ξ′i and at j by ξ′j. We then define the dual thermalization by

T dual,(m)
ij f(ξ) =

∑

ξ′i,ξ
′
j : ξ′i+ξ′j=ξi+ξj

f(t(ξ, ξ′i, ξ
′
j))γ̂m(ξ′i, ξ

′
j) (108)

and the dual instantaneously thermalized energy process as the process with generator

LIT,(m)
dual f(ξ) =

∑

ij∈S

(T dual,(m)
ij f(ξ) − f(ξ)) (109)

Theorem 6.6. Consider the instantaneously thermalized version of the Brownian energy

process, with generator LIT
m . This process is dual to the process with generator LIT,(m)

dual with

duality function given by

D(e, ξ) =
∏

i

Di(ei, ξi) (110)
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Di(ei, ξi) = eξi

i

Γ(m/2)

2ξiΓ(m/2 + ξi)
(111)

Proof. By the duality result for the Brownian energy process, Theorem 6.2, we have for all

(i, j) ∈ S × S
L

(m)
ij D(e, ξ) = L

(m),dual
ij D(e, ξ) (112)

therefore,

lim
t→∞

(etL
(m)
ij − id)D(e, ξ) = lim

t→∞
(etL

(m),dual

ij − id)D(e, ξ) . (113)

The result then follows from the definition of the processes, together with lemma 6.3 and

lemma 6.5.

6.4 Limiting processes as m → ∞

As it was done for the 2j-SEP, we study here the limiting behavior of the m-BEP process

for large m.

Theorem 6.7. Consider the process {z(m)
t : t ≥ 0} with generator L(m) and initial condition

z(m) ∈ R
S
+ and its dual {ξ(m)

t : t ≥ 0} with generator L
(m)
dual and initial condition ξ(m) ∈ N

S.

Suppose that, as m→ ∞, z(m) → z ∈ R
S
+ and ξ(m) → ξ ∈ N

S. Then:

1. the process {z(m)
t/m : t ≥ 0} converges to the process, (zt)t≥0 started from z, with gener-

ator

L =
∑

ij∈S

p(i, j)Lij

Lij = −2(zi − zj)

(

∂

∂zi
− ∂

∂zj

)

2. the process {ξ(m)
t/m} converges to a system of independent random walkers (ξt)t≥0 started

from ξ, with generator

Ldual =
∑

ij∈S

p(i, j)Ldual
ij

Ldual
ij = 2ξi(f(ξij) − f(ξ)) + 2ξj(f(ξji) − f(ξ))

3. The two limiting processes (xt)t≥0 and (ξt)t≥0 above are each other dual, with duality

function

D(x, ξ) =
∏

i∈S

xξi

i
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Proof. The proof of items 1. and 2. proceeds like in Theorem 4.3. For item 3. compare to

example in section 3.5.

6.5 Boundary driven process

In this last section we consider the m-BEP process in contact at its boundary to energy

reservoirs of the Ornstein-Uhlenbeck type. A duality result for the Brownian Momentum

Process with reservoirs was already proven in [6]. Here we generalize this result to the

general Brownian energy process for arbitrary m ∈ N. We start from the momentum process

{(x(t)i,α) : i ∈ S, α = 1, . . . ,m, t ≥ 0} on a ladder graph with m levels and all levels at sites

i ∈ ∂S connected to a thermalizing Ornstein-Uhlenbeck process which parameter Ti, to be

thought as the temperature. The generator reads

L =
∑

i,j∈S

p(i, j)

m
∑

α,β=1

(

xi,α
∂

∂xj,β
− xj,β

∂

∂xi,α

)2

+
∑

i∈∂S

m
∑

α=1

Ti
∂2

∂x2
i,α

− xi,α
∂

∂xi,α
(114)

If we now consider the induced process {zi(t) : i ∈ S, t ≥ 0} measuring the energy at each

site via the map

zi =

m
∑

α=1

x2
i,α ,

then, using the identities (90), we find the generator

L =
∑

i,j∈S

p(i, j)4zizj

(

∂

∂zi
− ∂

∂zj

)2

− 2m(zi − zj)

(

∂

∂zi
− ∂

∂zj

)

+
∑

i∈∂S

2Ti

(

m
∂

∂zi
+ 2zi

∂2

∂z2
i

)

− 2zi
∂

∂zi
(115)

Introducing as usual a set ∂eS of sink sites and a bijection i 7→ ie which associate each

boundary site i ∈ ∂S to a sink site ie ∈ ∂eS, we have the following duality theorem:

Theorem 6.8. Let (zt)t≥0 denote the boundary driven m-BEP with generator (115). Then
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(zt)t≥0 is dual to the process (ξt)t≥0 with generator

Ldualf(ξ) =
∑

i,j∈S

p(i, j)2ξi(2ξj +m)(f(ξi,j) − f(ξ)) + 2ξj(2ξi +m)(f(ξj,i) − f(ξ))

+
∑

i∈∂S

2ξi(f(ξi,ie) − f(ξ)) (116)

with duality function given by

D(z, ξ) =
∏

i∈∂eS

T ξi

i

∏

i∈S

zξi

i

Γ
(

m
2

)

2ξiΓ
(

m
2 + ξi

) (117)

Proof. The bulk part of the duality function coincides with the one of Theorem 6.2; the

boundary part is easily checked with an explicit computation.
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