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Abstract: We prove a comparison inequality between a system of inde-
pendent random walkers and a system of random walkers which interact
by attracting each other -a process which we call here the symmetric in-
clusion process (SIP). As an application, correlation inequalities for the
SIP, as well as for a model of heat conduction, the so-called Brownian mo-
mentum process, are obtained. These inequalities are counterparts of the
inequalities (in the opposite direction) for the symmetric exclusion pro-
cess, showing that the SIP is a natural bosonic analogue of the symmetric
exclusion process, which is fermionic. We discuss stationary measures of
the SIP, and an asymmetric version that has the same stationary prob-
ability measures, as well as infinite non-translation invariant reversible
measures. Finally, we consider a boundary driven version of the SIP for
which we prove duality and correlation inequalities.

1 Introduction

In Liggett [11], Chapter VIII, proposition 1.7, a comparison inequality between inde-
pendent symmetric random walkers and corresponding exclusion random walkers is
obtained. This inequality plays a crucial role in the understanding of the exclusion
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process; it makes rigorous the intuitive picture that symmetric random walkers inter-
acting by exclusion are more spread out than the corresponding independent walkers,
as a consequence of the repulsive interaction (exclusion), or in more physical terms,
because of the fermionic nature of the exclusion process. The comparison inequality
is a key ingredient in the ergodic theory of the symmetric exclusion process, i.e., in
the characterization of the invariant measures, and the measures which are in the
course of time attracted to a given invariant measure. The comparison inequality has
been generalized later on by Andjel [1], Liggett [12], and recently in the work of J.
Borcea, P. Brändén and T.M. Liggett [2].

In the search of a natural conservative particle system where the opposite inequal-
ity holds, i.e., where the particles are less spread out than corresponding independent
random walkers, it is natural to think of a “bosonic counterpart” of the exclusion pro-
cess. Infact, such a process was introduced in [7] and [8] as the dual of the Brownian
momentum process, a stochastic model of heat conduction (similar models of heat
conduction were introduced in [3] and [6], see also [4] for the study of the structure
function in a natural asymmetric version).

In the present paper we present a rigorous analysis of the “bosonic counterpart”
of the exclusion process. We will call this process (as will be motivated by a Pois-
son clock representation) the “symmetric inclusion process” (SIP). In the SIP, jumps
are performed according to independent random walks, and on top of that particles
“invite” other particles to join their site (inclusion). For this process we prove the
analogue of the comparison inequality for the symmetric exclusion process. From the
comparison inequality, using the knowledge of the stationary measure and the self-
duality property of the process, we deduce a series of correlation inequalities. Again,
in going from exclusion to inclusion process the correlations turn from negative to
positive. We remark however that these positive correlation inequalities are different
from the ordinary preservation of positive correlations for monotone processes [10],
because the SIP is not a monotone process. Since the SIP is dual to the heat conduc-
tion model it is immediate to extend those correlation inequalities to the Brownian
momentum process.

We also introduce the non-equilibrium versions of the SIP. A first possibility is
to consider the ASIP, i.e. asymmetry in the jump rates. In this case we show that
the product probability measures of the symmetric case is still invariant; moreover
we show that there exist other infinite inhomogeneous invariant measures, which are
obtained from detailed balance and which might be the signal of possible condensa-
tion phenomena appearing in the model because of the attractive character of the
interaction between particles. A second possibility to obtain a non equilibrium model
is to consider the boundary driven version of SIP. In this case we prove duality of
the process to a SIP model with absorbing boundary condition. We then deduce a
correlation inequality, explaining and generalizing the positivity of the covariance in
the non-equilibrium steady state of the heat conduction model in [7].

All the results will be also stated in the context of a family of SIP models, which
are labeled by parameter m ∈ N. As the SEP model can be generalized to the
situation where there are at most n ∈ N particles per site (this corresponds to a
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quantum spin chain with SU(2) symmetry and spin value j = n/2), in the same way
the SIP model can be extended to represent the situation of a quantum spin chain
with SU(1,1) symmetry and spin value k = m/4.

2 Definition

Let S be a finite or a countable infinite set, and p(x, y) a symmetric transition prob-
ability on S, i.e., p(x, y) = p(y, x) ≥ 0,

∑

y p(x, y) = 1. We suppose that p(x, y) is an
irreducible (discrete-time) random walk transition probability.

The symmetric inclusion process associated to the transition kernel p is a process
on Ω := N

S with generator defined on the core of local functions by

Lf(η) =
∑

x,y∈S

p(x, y)2ηx(1 + 2ηy) (f(ηx,y) − f(η)) (2.1)

where, for η ∈ Ω, ηx,y denotes the configuration obtained from η by removing one
particle from x and putting it at y.

In [7] this model was introduced as the dual of a model of heat conduction, the
so-called Brownian momentum process, see also [8], and [3] for generalized and or
similar models of heat conduction.

The process with generator (2.1) can be interpreted as follows. Every particle has
two exponential clocks: one clock -the so-called random walk clock- has rate 2, the
other clock -the so-called inclusion clock- has rate 4. When the random walk clock
of a particle at site x ∈ S rings, the particle performs a random walk jump with
probability p(x, y) to site y ∈ S. When the inclusion process clock rings at site y ∈ S,
with probability p(y, x) = p(x, y) a particle from site x ∈ S is selected and joins site
y.

From this interpretation, we see that besides jumps of a system of independent
random walkers, this system of particles has the tendency to bring particles together at
the same site (inclusion), and can therefore be thought of as a “bosonic” counterpart
of the symmetric exclusion process.

To make the analogy with the exclusion process even more transparent, in an
exclusion process with at most n particles (n ∈ N) per site (SEP (n)), the jump
rate is ηi(n − ηj)p(i, j). In section 7 we introduce the SIP (m) model, which (up
to an unessential re-scaling of all the rates by a factor 1/4) is obtained by changing
the minus into a plus and choosing n = m/2. More precisely the jump rates of the
SIP (m) process are 2ηi(m + 2ηj) and if m/2 is an integer then the SIP (m) is the
analogue of the SEP (m/2). We show that for the general class of SIP (m) with
m ∈ N we have the same correlation inequalities as for the SIP , duality, and explicit
product stationary measures.

Notice that the rates in (2.1) are increasing both in the number of particles of
the departure as of the arrival site of the jump (the rate is p(x, y)(2ηx)(1 + 2ηy) for a
particle to jump from x to y). Therefore, by the necessary and sufficient conditions of
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[9], Theorem 2.21, the SIP is not a monotone process. It is also easy to see that due to
the attraction between particles in the SIP, there cannot be a coupling that preserves
the order of configurations, i.e., in any coupling starting from an ordered pair of
configuration, the order will be lost in the course of time with positive probability.

2.1 Assumptions on the transition probability kernel

To prove some of our results we will need to make assumptions on the transition
probability p. We define the associated continuous-time random walk transition prob-
abilities (where the continuous walk jumps at rate 2 for later convenience),

pt(x, y) =
∞
∑

n=0

(2t)n

n!
e−2tp(n)(x, y) (2.2)

where p(n) denotes the nth power of the transition matrix p. Denote by P
IRW
x,y the

probability measure on path space associated to two independent random walkers
Xt, Yt started at x, y and jumping according to (2.2) and by P

SIP
x,y the corresponding

probability for two SIP walkers X
′

t , Y
′

t jumping with the rates of generator (2.1).

The assumptions we will sometime make are:

- Assumption (A1)
lim
t→∞

sup
x,y

P
IRW
x,y (Xt = Yt) = 0 (2.3)

- Assumption (A2)
lim
t→∞

sup
x,y

P
SIP
x,y (X

′

t = Y
′

t ) = 0 (2.4)

The assumption (A1) amounts to requiring that for large t > 0, two independent
random walkers walking according to the continuous time random walk probability
(2.2) will be at the same place with vanishing probability. The assumption (A1)
follows immediately if we restrict ourselves to the case where

lim
t→∞

sup
x,y

pt(x, y) = 0 (2.5)

since then

lim
t→∞

sup
x,y

P
IRW
x,y (Xt = Yt) = lim

t→∞
sup
x,y

∑

u∈S

pt(x, u)pt(y, u) = lim
t→∞

sup
x,y

p2t(x, y) = 0 (2.6)

Analogously, the assumption (A2) guarantees that two walkers evolving with the
SIP dynamic will be typically at different positions. For example, in the translation
invariant case S = Z

d, p(x, y) = p(0, y − x) =: π(x), this is automatically satisfied,
as the difference walk X

′

t − Y
′

t of two SIP particles is a random walk Zt on Z
d with

generator

LZf(z) = 8π(z)(f(0) − f(z)) +
∑

y

4π(y)(f(z + y) − f(z)) (2.7)
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which is clearly not positive recurrent.

Furthermore, assumption (A2) implies that any finite number of SIP particles will
eventually be at different locations. This is made precise in Lemma 1 in section 5.

3 Comparison of the SIP with independent ran-

dom walks

We will first consider the SIP process with a finite number of particle in subsection
3.1 and then state the comparison inequality in subsection 3.2.

3.1 The finite SIP

If we start the SIP with n particles at positions x1, . . . , xn ∈ S, we can keep track
of the labels of the particles. This gives then a continuous-time Markov chain on Sn

with generator

Lnf(x1, . . . , xn) =
n
∑

i=1

∑

y∈S

2p(xi, y)

(

1 + 2
n
∑

j=1

I(y = xj)

)

(f(xxi,y) − f(x))

= L1,nf(x) + L2,nf(x) (3.1)

where xxi,y denotes the n-tuple (x1, . . . , xi−1, y, xi+1, . . . , xn). Further, L1,n, resp. L2,n

denote the random walk resp. inclusion part of the generator and are defined as follows

L1,nf(x1, . . . , xn) =

n
∑

i=1

∑

y∈S

2p(xi, y)(f(xxi,y) − f(x)) (3.2)

L2,nf(x1, . . . , xn) =

n
∑

i=1

n
∑

j=1

4p(xi, xj)(f(xxi,xj) − f(x)) (3.3)

We call Tn(t) the semigroup on functions f : Sn → R associated to the generator
(3.1), and Un(t) the semigroup of a system of independent continuous-time random
walkers (jumping at rate 2), i.e., the semigroup associated to the generator L1,n.

3.2 Comparison inequality

From the description above, it is intuitively clear that in the SIP, particle tend to
be less spread out than in a system of independent random walkers. The Theorem 1
below formalizes this intuition and is the analogue of a comparison inequality of the
SEP ([11], Chapter VIII, Proposition 1.7).

To formulate it, we need the notion of a positive definite function. A function
f : S × S → R is called positive definite if for all β ∈ l1(S),

∑

x,y

f(x, y)β(x)β(y) ≥ 0
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A function f : Sn → R is called positive definite if it is positive definite in every pair
of variables.

Theorem 1. Let f : Sn → R be positive definite. Then we have

Un(t)f(x) ≤ Tn(t)f(x) (3.5)

for all x ∈ Sn.

Proof. Start with the decomposition (3.1) and use the symmetry of p(x, y) to write

(Lnf −L1,nf)(x) = (L2,nf)(x)

=

n
∑

i=1

n
∑

j=1

4p(xi, xj)(f(xxi,xj) − f(x))

=
n
∑

i=1

n
∑

j=1

2p(xi, xj)(f(xxi,xj) + f(xxj ,xi) − 2f(x))

=

n
∑

i=1

n
∑

j=1

2p(xi, xj)

×
∑

x,y

f(x1, . . . , xi−1, x, xi+1, . . . , xj−1, y, xj+1, . . . , xn)(δxi,x − δxj ,x)(δxi,y − δxj ,y)

≥ 0 (3.6)

From here on, we can follow the line of thought of proof of Proposition 1.7 in [11].
Since Un(t) is the semigroup of independent walks, it maps positive definite functions
into positive definite functions, we have

(LnUn(t)f −L1,nUn(t)f) = L2,nUn(t)f ≥ 0

We can then use the variation of constants formula

Tn(t)f − Un(t)f =

∫ t

0

dsTn(t− s) (L2,nUn(s)f) ≥ 0 (3.7)

and remember that Tn(t) is a Markov semigroup and hence maps non-negative func-
tions into non-negative functions.

4 Stationary measures and self-duality for the SIP

In [8] we found invariant product measures that are reversible for the SIP and we es-
tablished the self-duality property of the process. Here we recall those results because
we will need them to deduce correlation inequalities from the comparison inequality
above. Moreover we find the relation between the invariant product measures and
the duality functions and from this we deduce ergodicity of these measures.
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For a parameter 0 ≤ λ < 1 we define the probability measure νλ on N via

νλ(k) =
1

Zλ

(2k − 1)!!

2kk!
λk, k ∈ N (4.1)

with

(2k − 1)!! =
k
∏

j=1

(2j − 1) =
1√
2π

∫ ∞

−∞

x2ke−x2/2dx, (4.2)

Zλ =
1

√

(1 − λ)

and where we make the convention (−1)!! := 1. With a slight abuse of notation, we
use the same symbol νλ to denote the homogeneous product measure on Ω = N

S with
marginals given by (4.1). The SIP process with generator (2.1) has νλ as reversible
measure and is self-dual with duality functions defined as follows: for k ≤ n (with
k, n ∈ N)

D(k, n) =
n!

(n− k)!

2k

(2k − 1)!!
(4.3)

and D(k, n) = 0 for k > n. We use the same symbol D for the multivariate version
of (4.3), i.e., for ξ ∈ Ω, finite particle configuration, (|ξ| =

∑

x ξx <∞),

D(ξ, η) =
∏

x∈S

D(ξx, ηx)

The SIP is self-dual, with these duality functions, i.e.,

E
SIP
η D(ξ, ηt) = E

SIP
ξ D(ξt, η) (4.4)

where ESIP
η (·) denotes expectation in the SIP process ηt, t ≥ 0, started from η at

time t = 0. The relation between the polynomials D(ξ, η) and the reversible measure
νλ is easily obtained. Using (4.2) we have

∫

D(ξ, η)νλ(dη) = ρ
|ξ|
λ (4.5)

where

ρλ =
λ

1 − λ
(4.6)

.

Notice that D(δx, η) = 2ηx (where δx denotes the particle configuration with a
single particle at site x), so ρλ equals twice the expected number of particles.

From (4.5) and self-duality, we see that the invariance of the measure νλ corre-
sponds to the conservation of particles in the dual process, i.e.,

∫

E
SIP
η (D(ξ, ηt)) νλ(dη) = E

SIP
ξ

∫

D(ξt, η)νλ(dη)

= E
SIP
ξ ρ

|ξt|
λ

= ρ
|ξ|
λ

=

∫

(D(ξ, η)) νλ(dη) (4.7)
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From the relation above we can further infer the extremal invariance of the measure
νλ under the assumption (A2) on the transition probability kernel p. To see this, we
denote for two finite particle configurations ξ ⊥ ξ′, if their supports are disjoint,
i.e., there are no site x ∈ S where there are ξ and ξ′ particles. If ξ ⊥ ξ′ then
D(ξ + ξ′, η) = D(ξ, η)D(ξ′, η). Since at large t > 0, assumption (A2) implies that,
in the SIP started with a finite number of particles, particles are with probability
close to one at different locations (see Lemma 1 for a proof of this), we have that
for ξ′ a fixed configuration, the event ξt ⊥ ξ′ has probability close to one as t → ∞.
Therefore

lim
t→∞

∫

E
SIP
η (D(ξ, ηt))D(ξ′, η)νλ(dη) = lim

t→∞
E

SIP
ξ

∫

D(ξt, η)D(ξ′, η)νλ(dη)

= lim
t→∞

E
SIP
ξ

∫

D(ξt, η)D(ξ′, η)I(ξt ⊥ ξ′)νλ(dη)

= lim
t→∞

ρ
|ξt|+|ξ′|
λ

= ρ
|ξ|+|ξ′|
λ

=

∫

D(ξ, η)νλ(dη)

∫

D(ξ′, η)νλ(dη) (4.8)

which shows that time dependent correlations of (linear combinations of) D(ξ, ·)
polynomials decay in the course of time to zero, and hence, by standard argument,
νλ is mixing and thus ergodic.

5 Correlation inequalities for the SIP

To start with the correlation inequalities that follow from (3.5) in Theorem 1, consider
for Λ : S → [0, 1), the inhomogeneous product measure

νΛ = ⊗x∈SνΛ(x) (5.1)

where νΛ(x) is the measure νλ of (4.1) with λ = Λ(x). This inhomogeneous product
measure has to be thought of as the analogue of the product of Bernoulli measures
in the context of the symmetric exclusion process (SEP). Notice however that in the
context of the SEP no distinction can be made between a general product measure and
a product of Bernoulli measures, as the single site state space is {0, 1}. The statement
that negative correlations are preserved as we evolve the SEP from a product measure,
will therefore be replaced here by positive correlations are preserved as we evolve the
SIP from a measure of type νΛ (rather than from a general product measure).

The relation between the inhomogeneous product measure and the duality func-
tions of the SIP reads (using 4.5)

∫

D

(

n
∑

i=1

δxi
, η

)

νΛ(dη) =

n
∏

i=1

ρ(xi) (5.2)
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where ρ(x) = Λ(x)/(1 − Λ(x)), and where
∑n

i=1 δxi
denotes the configuration with

particles at positions (x1, . . . , xn). Therefore the map

Sn → R : (x1, . . . , xn) 7→
∫

D

(

n
∑

i=1

δxi
, η

)

νΛ(dη) =

n
∏

i=1

ρ(xi)

is clearly positive definite, and we can apply Theorem 1. This gives the following.

Proposition 1. For all t ≥ 0, and for all finite particle configurations Ω ∋ ξ =
∑n

i=1 δxi
,

∫

Eη

(

D

(

n
∑

i=1

δxi
, ηt

))

νΛ(dη) ≥
n
∏

i=1

∫

Eη (D (δxi
, ηt)) νΛ(dη) (5.4)

In particular, when the SIP is started from νΛ, the random variables {ηt(x), x ∈ S}
are positively correlated, i.e., for (x, y) ∈ S × S

∫

E
SIP
η (ηx(t)ηy(t)) νΛ(dη) ≥

∫

E
SIP
η (ηx(t)) νΛ(dη)

∫

E
SIP
η (ηy(t)) νΛ(dη)

Proof. Denote by E
SIP
x1,...,xn

expectation in the SIP process started with n particles at
positions (x1, . . . , xn), by E

IRW expectation in the process of independent random
walkers and E

RW a single random walker expectation. We then have the following
chain of inequalities, which is obtained by using sequentially the following: self-duality
property (4.4), the comparison inequality (3.5), the relation between the measure νΛ

and the duality function D (5.2), the independence between random walkers, the fact
that a single SIP particle moves as a continuous time random walk, and finally again
self-duality (4.4)

∫

E
SIP
η D

(

n
∑

i=1

δxi
, ηt

)

νΛ(dη)

= E
SIP
x1,...,xn

∫

D

(

n
∑

i=1

δXi(t), η

)

νΛ(dη)

≥ E
IRW
x1,...,xn

∫

D

(

n
∑

i=1

δXi(t), η

)

νΛ(dη)

= E
IRW
x1,...,xn

(

n
∏

i=1

ρ(Xi(t))

)

=

n
∏

i=1

E
RW
xi

ρ(Xi(t))

=
n
∏

i=1

∫

E
SIP
xi

(

D(δXi(t), η)
)

νΛ(dη)

=

n
∏

i=1

∫

E
SIP
η (D(δxi

, ηt)) νΛ(dη) (5.5)
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From the analogy with the SEP emphasized above, one could think that (5.4)
extends to the case when the SIP process is started from a general product probability
measures. However, for general probability measures µ on Ω, the map µ̂ : Sn → R
defined by

(x1, . . . , xn) 7→ µ̂(x1, . . . , xn) =

∫

D

(

n
∑

i=1

δxi
, η

)

µ(dη) (5.6)

is not necessarily positive definite (as is the case for the special product measures νΛ),
since we do not have the equalityD (

∑n
i=1 δxi

, η) =
∏n

i=1D(δxi
, η)) in general. Notice

that this problem does not appear in the context of the SEP, as for that model, the
self-duality functions are

DSEP

(

n
∑

i=1

δxi
, η

)

=
n
∏

i=1

ηxi
=

n
∏

i=1

DSEP (δxi
, η)

and hence automatically the map (5.6) is positive definite in that model.

If however all xi are different, we have D(
∑n

i=1 δxi
, η) =

∏n
i=1D(δxi

, η), and for
every probability measure µ on Ω, the function Ψµ : Sn → R defined by

Ψµ(x1, . . . , xn) =

∫ n
∏

i=1

D(δxi
, η)µ(dη) (5.7)

is clearly positive definite. This, together with the fact that under assumption (A2),
a finite number of SIP particles diffuse and therefore eventually will be typically
at different positions, suggests that in a stationary measure, the variables ηxi

are
positively correlated.

To state this result we introduce the class of probability measures with uniform
finite moments

Pf =: {µ : ∀n ∈ N, sup
|ξ|=n

∫

D(ξ, η)µ(dη) =: Mn
µ <∞} (5.8)

For a sequence of measures µn ∈ Pf , and µ ∈ Pf , we define that µn → µ if for all ξ
finite particle configuration,

lim
n→∞

∫

D(ξ, η)µn(dη) =

∫

D(ξ, η)µ(dη)

We can then formulate our next result.

Proposition 2. Assume (A1) and (A2). Let ν ∈ Pf be a product measure. Let S(t)
denote the semigroup of the SIP. Suppose that µ = limn→∞ νS(tn) for a subsequence
tn ↑ ∞. Then we have µ ∈ Pf , µ is invariant and

µ̂(x1, . . . , xn) ≥
n
∏

i=1

µ̂(xi) (5.10)
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Proof. First, by duality we have, referring to the definition of Pf , for all t > 0,
∫

E
SIP
η D(ξ, ηt)ν(dη) = E

SIP
ξ

∫

D(ξt, η)ν(dη) ≤M |ξ|
ν <∞

which shows that both νS(tn) and µ are elements of Pf . The invariance of µ follows
from duality, ν ∈ Pf and Lemma 1.26 in [11], chapter V.

To proceed with the proof of the proposition, we start with the following lemma,
which ensures that, under condition (A2), any number of SIP particles will eventually
be at different locations.

Lemma 1. Assume (A2). Start the finite SIP with particles at locations {x1, . . . , xn},
then

lim
t→∞

P
SIP
x1,...,xn

(∃i 6= j : Xi(t) = Xj(t)) = 0 (5.12)

Proof. Put η :=
∑n

i=1 δxi
. Using self-duality we can write

P
SIP
η (∃i 6= j : Xi(t) = Xj(t)) ≤

∑

z

P
SIP
η

(

η2
t (z) − ηt(z) > 1

)

≤
∑

z

E
SIP
η (η2

t (z) − ηt(z))

=
3

4

∑

z

E
SIP
η (D(2δz, ηt))

=
3

4

∑

z

E
SIP
z,z (D(δXt

+ δYt
, η))

≤ 3
∑

z

E
SIP
z,z (η(Xt)η(Yt))

= 3
∑

z

n
∑

i,j=1

E
SIP
z,z (I(Xt = xi)I(Yt = xj))

≤ 3n2 sup
x,y

P
SIP
x,y (Xt = Yt) (5.13)

where in the last step we used the symmetry of the transition probabilities of the SIP
(with two particles).

We now proceed with the proof of the proposition. For x1, . . . , xn ∈ S we define
∣

∣

∣

∣

∣

D(

n
∑

i=1

δxi
, η) −

n
∏

i=1

D(δxi
, η)

∣

∣

∣

∣

∣

= ∆(x1, . . . , xn, η) (5.14)

We have that ∆(x1, . . . , xn, η) = 0 if all xi are different, i.e., if |{x1, . . . , xn}| = n.
Since by assumption (A2) and Lemma 1, the probability that two SIP walkers out of
a finite number n of them occupy the same position, i.e. Xi(t) = Xj(t) for some i 6= j,
vanishes in the limit t→ ∞, we conclude, using ν ∈ Pf , for any x1, . . . , xn ∈ S,

lim
t→∞

∫

E
SIP
x1,...,xn

∆(X1(t), . . . , Xn(t), η)ν(dη) = 0 (5.15)
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Moreover from the comparison inequality (3.5) we have, using the notation (5.7)

E
SIP
x1,...,xn

Ψν(X1(t), . . . , Xn(t)) ≥ E
IRW
x1,...,xn

Ψν(X1(t), . . . , Xn(t))

= E
IRW
x1,...,xn

∫ n
∏

i=1

D
(

δXi(t), η
)

ν(dη)

=
n
∏

i=1

E
RW
xi

∫

D(δXi(t), η)ν(dη) + ǫ(t) (5.16)

where ǫ(t) → 0 as t → ∞ by assumption (A1), i.e., for large t > 0, independent
random walkers are at different locations with probability close to one. Therefore,
using the definition (5.6), the self-duality property (4.4), the equation (5.15), the
equation (5.16), and taking limits along the subsequence tn we have

µ̂(x1, . . . , xn) = lim
t→∞

∫

E
SIP
η D

(

n
∑

i=1

δxi
, ηt

)

ν(dη)

= lim
t→∞

∫

E
SIP
x1,...,xn

D

(

n
∑

i=1

δXi(t), η

)

ν(dη)

= lim
t→∞

E
SIP
x1,...,xn

Ψν(X1(t), . . . , Xn(t))

≥ lim
t→∞

n
∏

i=1

E
RW
xi

∫

D(δXi(t), η)ν(dη)

=
n
∏

i=1

µ̂(xi) (5.17)

6 Correlation inequalities for the Brownian mo-

mentum process

The Brownian momentum process is a system of interacting diffusions, initially in-
troduced as a model of heat conduction in [6], and analyzed via duality in [7]. It is
defined as a Markov process on X = R

S via the formal generator on local functions:

LBMP f(η) =

(

∑

x,y∈S

p(x, y)

(

ηx
∂

∂ηy
− ηx

∂

∂ηy

)2
)

f(η) (6.1)

The ηx have to be thought of as momenta of an “oscillator” associated to site x ∈ S.
The local kinetic energy η2

x has to be thought of as the analogue of the number
of particles at site x in the SIP. The expectation of η2

x is interpreted as the local
temperature at x.

12



Defining the polynomials

D(n, z) =
z2n

(2n− 1)!!

we have the duality function D(ξ, ·) defined on X and indexed by finite particle
configurations ξ ∈ N

S,
∑

x ξx <∞:

D(ξ, η) =
∏

x∈S

D(ξx, ηx) (6.2)

In [7], [8], we proved the duality relation

E
BMP
η (D(ξ, ηt)) = E

SIP
ξ (D(ξt, η)) (6.3)

As before, for x1, . . . , xn ∈ S we denote by
∑n

i=1 δxi
the particle configuration obtained

by putting a particle at each xi.

Let µ be a product of Gaussian measures on X, with site-dependent variance, i.e.,
for a function ρ : S → [0,∞), we define

µρ = ⊗x∈Sνρ(x)(dηx) (6.4)

where

νρ(x)(dηx) =
e−η2

x/2ρ(x)

√

2πρ(x)
dηx

is the Gaussian measure on R with mean zero and variance ρ(x). Then we have

∫

D(

n
∑

i=1

δxi
, η)µρ(dη) =

n
∏

i=1

ρ(xi) (6.5)

From this expression, it is obvious that the map

Sn → R : (x1, . . . , xn) 7→
∫

D(

n
∑

i=1

δxi
, η)µρ(dη) (6.6)

is positive definite. Therefore, combining the duality property between BMP process

13



and SIP process, (6.3), with Theorem 1 we have the inequality

∫

E
BMP
η D(

n
∑

i=1

δxi
, ηt)µρ(dη)

= E
SIP
x1,...,xn

∫

D(
n
∑

i=1

δXi(t), η)µρ(dη)

≥ E
IRW
x1,...,xn

∫

D(

n
∑

i=1

δXi(t), η)µρ(dη)

= E
IRW
x1,...,xn

(

n
∏

i=1

∫

D(δXi(t), η)µρ(dη)

)

= E
IRW
x1,...,xn

(

n
∏

i=1

ρ(Xi(t))

)

=
n
∏

i=1

E
RW
xi

ρ(Xi(t))

=

n
∏

i=1

∫

E
SIP
xi

(D(δXi(t), η))µρ(dη)

=
n
∏

i=1

∫

E
BMP
η (D(δxi

, ηt))µρ(dη) (6.7)

which is the analogue of Proposition 1 for the BMP process.

In words, it means that the “non-equilibrium temperature profile” is above the
temperature profile predicted from the discrete diffusion equation. It also implies
that the variables {η2

x : x ∈ S} are positively correlated under the measure (µρ)t for
all choices of ρ, t > 0.

More precisely, if we denote

ρt(x) = Exρ(Xt)

then we have that η2
x at time t has expectation ρt(x) when the starting measure

is µρ (since a single particle in the SIP moves as a continuous time random walk).
If we denote by µρt

the Gaussian product measure with mean zero and variance
µρt(x)(η

2
x) = ρt(x), then the measure (µρ)t (evolved for a time t under the BMP

process) dominates the measure µρt
, i.e., for all ξ ∈ N

S finite particle configuration,
we have

∫

D(ξ, η)(µρ)t(dη) ≥
∫

D(ξ, η)(µρt
)(dη) (6.8)

Similarly, we obtain an analogous correlation inequality for the BMP for measure
obtained as a limit of product measures. We define

Pf(X) = {µ : ∀n ∈ N : sup
|ξ|=n

∫

D(ξ, η)µ(dη) <∞}

14



Proposition 3. Assume (A1) and (A2). Suppose ν ∈ Pf (X) is a product measure
and µ is a limit point of the set {νS(t) : t ≥ 0}, where S(t) denotes the semigroup of
the BMP process. Then we have the inequality

µ̂(x1, . . . , xn) ≥
n
∏

i=1

µ̂(xi)

7 Generalization to the SIP(m) processes

The SIP (m) process is defined as the process on Ω = N
Z

d

with generator defined on
the core of local functions by

Lf(η) =
∑

x,y∈S

p(x, y)2ηx(m+ 2ηy) (f(ηx,y) − f(η)) (7.1)

The SIP process is the case m = 1.

This model has reversible product measures with marginals

νm
λ (n) =

1

Zλ,m

λn

n!

Γ(m
2

+ n)

Γ(m
2
)

, n ∈ N (7.2)

where 0 ≤ λ < 1 is a parameter, Γ(r) denotes the gamma-function, and where the
normalizing constant

Zλ,m =

(

1

1 − λ

)m/2

This can be seen immediately by verifying the detailed balance condition.

Notice that for m = 2, νm
λ is a geometric distribution (starting from zero), i.e.,

ν2
λ(n) = λn(1− λ), n ∈ N. Moreover, the measures νm have the following convolution

property
νm

λ ∗ νl
λ = νm+l

λ (7.3)

where ∗ denotes convolution, i.e., a sample from νm
λ ∗ νl

λ is obtained by site-wise
addition of a sample from νm

λ and an independent sample from νl
λ.

The SIP (m) process is self-dual with duality functions now given by Dm(ξ, η) =
∏

xDm(ξx, ηx), with

Dm(k, n) =
n!

(n− k)!

Γ
(

m
2

)

Γ
(

m
2

+ k
) (7.4)

The relation between the polynomials Dm and the measure νm
λ reads

∫

Dm(ξ, η)νm
λ (dη) =

(

λ

1 − λ

)|ξ|

(7.5)

as follows from a simple computation using Γ(r) =
∫∞

0
xr−1e−xdx.

So we see once more that the invariance of the measures νm
λ corresponds to con-

servation of total particle number in the dual process. In the same way as for the SIP,
it also implies that the measures νm

λ are extremal invariant, and analog Propositions
to Propositions 1 and 2 can be proved in the same way as in the m = 1 case.
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Proposition 4. Denote, for Λ : S → [0, 1) the product measure

νm
Λ = ⊗xν

m
Λ(x) (7.7)

where νΛ(x) is the measure νλ of (7.2) with λ = Λ(x).Then we have the inequality
∫

E
SIP (m)
η

(

Dm

(

n
∑

i=1

δxi
, ηt)

))

νm
Λ (dη) ≥

n
∏

i=1

∫

E
SIP (m)
η (Dm (δxi

, ηt)) ν
m
Λ (dη))

(7.8)

Proposition 5. Assume (A1) and (A2). Let ν ∈ Pf be a product measure on Ω,
suppose that νS(t) has a limit point along a sequence of times tn ↑ ∞, then for the
limit point µ, we have the correlation inequality

µ̂m(x1, . . . , xn) ≥
n
∏

i=1

µ̂m(xi)

where

µ̂m(x1, . . . , xn) =

∫

Dm

(

n
∑

i=1

δxi
, η

)

µ(dη)

Finally we explain how the convolution property (7.3) arises from an “additivity”
property at the process level. Consider the following SIP on a graph of the form
G = S × {1, 2, . . . , k}. Vertices in G are denoted (i, α). The SIP which we consider
on G has generator

Lf(η) =
∑

i,j∈S

∑

α,β∈{1,2,...,k}

p(i, j)2η(i, α)(mβ + 2η(j, β))(f(η(i,α),(j,β)) − f(η)) (7.10)

This is interpreted as follows: every site in S has k levels and SIP-particles jump with
an underlying random walk kernel that does not depend on the level.

Consider then the reduced configuration h(η)i =
∑k

α=1 η(i, α) (i ∈ S), and a
function of the form f = ψ ◦ h(η). The generator applied to this type of function
yields

Lf(η) =
∑

i,j∈S

p(i, j)2h(η)i

(

k
∑

β=1

mβ + 2h(η)j

)

(

ψ(h(η)(i,j)) − ψ(η)
)

(7.11)

Therefore the process h(ηt) is again a Markov process which is exactly the SIP (with
particle configurations on S) with underlying kernel p(i, j) and m =

∑k
β=1mβ .

8 Asymmetric generalization

For simplicity we first illustrate here the one-dimensional nearest neighbor case. The
asymmetric modification of the SIP is then the process with generator

LASIP
p,q f(η) =

∑

i∈Z

2pηi(1 + 2ηi+1)(f(ηi,i+1) − f(η))

+
∑

i∈Z

2qηi+1(1 + 2ηi)(f(ηi+1,i) − f(η)) (8.1)
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where 1 > p > 1/2, q = (1 − p).

The following proposition shows that the measures νλ are still invariant for this
asymmetric modification.

Proposition 6. Let νλ be the product measure with marginals defined as in (4.1).
Then for every 1 > p > 1/2, νλ is a stationary measure for the ASIP with generator
(8.1)

Proof. Using detailed balance of the measure ν = νλ for the SIP, we have

ν(η)2ηi(1 + 2ηi+1) = ν(ηi,i+1)2ηi,i+1
i+1 (2ηi,i+1

i + 1)

and
ν(η)2ηi+1(1 + 2ηi) = ν(ηi+1,i)2ηi+1,i(2ηi+1,i

i+1 + 1)

Using this one easily computes for f : Ω → R a local function,

∫

LASIP
p,q f(η)dν = lim

N→∞

N
∑

i=−N

∫

2pηi(1 + 2ηi+1)(f(ηi,i+1) − f(η))dν

+ lim
N→∞

N
∑

i=−N

∫

2qηi+1(1 + 2ηi)(f(ηi+1,i) − f(η))dν

= 2(p− q) lim
N→∞

∫ N
∑

i=−N

(ηi+1 − ηi)f(η)dν = 0 (8.3)

This proposition can now be generalized easily to the case S = Z
d and trans-

lation invariant underlying random walk. I.e., for p : Z
d → [0, 1] with

∑

x p(x) =
1,
∑

x |x|p(x) <∞ consider the generator

LASIP
p f(η) =

∑

i,j∈Zd

2p(j − i)ηi(1 + 2ηj)(f(ηi,j) − f(η)) (8.4)

then we have

Proposition 7. The product measure νλ with marginals given by (4.1), is stationary
for the process with generator LASIP

p

Proof. Using detailed balance for ν = νλ (for the SIP), we have

ν(η)2ηj(1 + 2ηi) = ν(ηj,i)2ηj,i
i (1 + 2ηj,i

j )

which gives, for f : Ω → R a local function,
∫

LASIP
p f(η)dν = lim

N→∞

∑

i,j∈Zd,|i−j|≤N

p(i− j)

∫

2(ηj − ηi)fdν = 0 (8.6)
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An asymmetric version of the SIP (m) with the same product measures νm
λ as

invariant measures is given by the generator

LASIP
π,m f(η) =

∑

x,y∈S

π(y − x)2ηx(m+ 2ηy) (f(ηx,y) − f(η))

where π(x) ≥ 0,
∑

x π(x) = 1,
∑

x |x|π(x) <∞.

8.1 Inhomogeneous invariant measures

In this section we compute reversible infinite measures for the asymmetric SIP (m).
Because of the attractive interaction between the particles, it is intuitively clear that
a profile where the expected number of particles at site i increases as i → ∞ cannot
persist in time (particles would run of to plus infinity). Nevertheless, we show that
there exist non-translation invariant infinite measures which are reversible for the
process. This phenomenon of having both translation invariant non-reversible proba-
bility measures and non-translation invariant reversible infinite measures is related to
both the unbounded state space and the attractive interaction between the particles.

Consider the nearest neighbor asymmetric ASIP (m), with generator

LASIP
p,q,m f(η) =

∑

i∈Z

2pηi(m+ 2ηi+1)(f(ηi,i+1) − f(η))

+
∑

i∈Z

2qηi+1(m+ 2ηi)(f(ηi+1,i) − f(η)) (8.7)

We suppose p > q, i.e., particles drift to the right. We look for non-translation
invariant product measures that are reversible under this process. I.e., we look for a
measure

ν(dη) = ⊗i∈Zνi(dηi)

which satisfies detailed balance. The detailed balance condition gives the recursion

(

νi(n)

νi(n− 1)

2n

m+ 2n− 2

)(

νi+1(k + 1)

νi+1(k)

2(k + 1)

m+ 2k

)−1

=
q

p
(8.8)

To solve this recursion, we make the Ansatz

(

νi(n)

νi(n− 1)

2n

m+ 2n− 2

)

= ziα(n)

which gives z = p/q and

νi(n) = νi(0)

(

p

q

)ni

λn
n
∏

k=1

m+ 2k − 2

2k

= νi(0)

(

p

q

)ni

λn Γ
(

m
2

+ n
)

Γ
(

m
2

)

n!
(8.9)
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The series
∞
∑

n=0

(

p

q

)ni

λn Γ
(

m
2

+ n
)

Γ
(

m
2

)

n!

converges for
(

p

q

)i

λ < 1

and diverges otherwise. Therefore, the measure νi on N is a finite measure for i <
(log(1/λ))(log(p/q))−1, and infinite for i ≥ (log(1/λ))(log(p/q))−1.

For the sites i < (log(1/λ))(log(p/q))−1, the expected number of particles is equal
to

E(ηi) =
m

2

(

p
q

)i

λ

1 −
(

p
q

)i

λ

which diverges in the “limit” i→ (log(1/λ))(log(p/q))−1.

9 The boundary driven SIP (m)

In this section we consider the non-equilibrium one-dimensional model that is ob-
tained by considering particle reservoirs attached to the first and last particle of the
chain. We will show that, if one requires reversibility w.r.t. the measure νm

λ and
duality with absorbing boundaries, this uniquely fixes the birth and death rates at
the boundaries.

The generator of the boundary driven SIP (m) on a chain {1, . . . , N} driven at
the end points, reads

L = L1 + LN + Lbulk (9.1)

where Lbulk denotes the SIP (m) generator, with nearest neighbor random walk as
underlying kernel, i.e.,

Lbulkf(η) =
∑

x∈{1,...,N−1}

2ηx(m+2ηx+1)
(

f(ηx,x+1) − f(η)
)

+2ηx+1(m+2ηx)
(

f(ηx+1,x) − f(η)
)

(9.2)
and where L1,LN are birth and death processes on the first, resp. N -th variable, i.e.,

L1f(η) = dL(η1)(f(η − δ1) − f(η)) + bL(η1)(f(η + δ1) − f(η))

and
LNf(η) = dR(ηN )(f(η − δN) − f(η)) + bR(ηN )(f(η + δN ) − f(η))

These generators model contact with the left, resp. right particle reservoir.

The rates dL, bL, dR, bR are chosen such that detailed balance is satisfied w.r.t. the
measure νm

λ , with λ = λL for dL, bL, and λ = λR for dR, bR. More precisely, this
means that these rates satisfy

bα(k)νm
λα

(k) = dα(k + 1)νm
λα

(k + 1) (9.3)
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for α ∈ {L,R}.
To state our duality result, we consider functions D(ξ, η) indexed by particle

configurations ξ on {0, . . . , N + 1} defined by

D(ξ, η) = ρ
|ξ0|
L D(ξ{1,...,N}, η)ρ

|ξN+1|
R (9.4)

where ρα = ρλα
= λα/(1 − λα), and where we remember that

D(k, n) =
n!

(n− k)!

Γ
(

m
2

)

Γ
(

m
2

+ k
)

is the duality function for the SIP (m). I.e., for the “normal” sites {1, . . . , N} we
simply have the old duality functions, and for the “added” sites {0, N + 1} we have
the expectation of the duality function over the measure νm

λ .

We now want duality to hold with duality functions D, and with a dual process
that behaves in the bulk as the SIP (m), and which has absorbing boundaries at
{0, N + 1}. More precisely, we want the generator of the dual process to be

L̂ = Lbulk + L̂1 + L̂N (9.5)

with Lbulk given by (9.2), and

L̂1f(ξ) = ξ1
(

f(ξ1,0) − f(ξ)
)

L̂Nf(ξ) = ξN
(

f(ξN,N+1) − f(ξ)
)

for ξ ∈ N
{0,1...,N+1}. The duality relation then reads, as usual,

(LD(ξ, ·)) (η) =
(

L̂D(·, η)
)

(ξ) (9.6)

Since self-duality is satisfied for the bulk generator with the choice (9.4), i.e., since

(LbulkD(ξ, ·)) (η) = (LbulkD(·, η)) (ξ)

(9.6) will be satisfied if we have the following relations at the boundaries: for all
k ≤ n:

bα(n)(D(k, n+ 1) −D(k, n)) + dα(n)(D(k, n− 1) −D(k, n))

= k(D(k − 1, n)ρα −D(k, n)) (9.7)

where α ∈ {L,R}.
From detailed balance (9.3) we obtain

dα(n) =
1

λα

(

n
m
2

+ n− 1

)

bα(n− 1) (9.8)
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Working out (9.7) gives, using (7.4),

bα(n)

(

n+ 1

n+ 1 − k
− 1

)

+ dα(n)

(

n− k

n
− 1

)

= k

(

(

m
2

+ k − 1
)

ρα

n− k + 1
− 1

)

(9.9)

which simplifies to

bα(n)

n + 1 − k
− dα(n)

n
=

(

(

m
2

+ k − 1
)

ρα

n− k + 1
− 1

)

(9.10)

Choosing

dα(n) =
n

1 − λα
(9.11)

and by the detailed balance condition (9.8),

bα(n) =
(m

2
+ n
) λα

1 − λα

(9.12)

it is then an easy computation to see that (9.7) is satisfied with the choices (9.11),
(9.12). Indeed, (9.10) reduces to the simple identity

(m

2
+ n
)

(

λ

1 − λ

)

1

n + 1 − k
− 1

1 − λ
=

m
2

+ k − 1

n + 1 − k

(

λ

1 − λ

)

− 1

We remark that the requirement of detailed balance alone is not sufficient to fix the
rates uniquely. However, the additional duality constraint (9.7) does fix the rates to
the unique expression given by (9.11) and (9.12).

As a consequence of duality with duality functions (9.4), we have that the bound-
ary driven SIP (m) with generator (9.1) has a unique stationary measure µL,R for
which expectations of the polynomials D(ξ, η) are given in terms of absorption prob-
abilities:

∫

D(ξ, η)µL,R(dη) = lim
t→∞

∫

EηD(ξ, ηt)

= lim
t→∞

∫

ÊξD(ξt, η)

=
∑

k,l:k+l=|ξ|

ρk
Lρ

l
RP̂ξ (ξ∞ = kδ0 + lδN+1) (9.13)

Here, Êξ denotes expectation in the dual process (which is absorbing at {0, N + 1})
starting from ξ. In particular, since a single SIP (m) particle performs continuous
time simple random walk, we have a linear density profile, i.e.,

∫

D(δi, η)µL,R(dη) = ρL

(

1 − i

N + 1

)

+ ρR
i

N + 1
(9.14)
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9.1 Correlation inequality for the boundary driven SIP (m)

For x1, . . . , xn ∈ {1, . . . , N} let us denote by (X1(t), . . . , Xn(t)) the positions of par-
ticles at time t evolving according to the SIP (m) with absorbing states {0, N +
1}, i.e., according to the generator (9.5), and initially at positions x1, . . . , xn. Let
(Y1(t), . . . , Yn(t)) denote the positions at time t of independent random walkers (jump-
ing at rate 2) absorbed (at rate 1) at {0, N+1}, initially at positions x1, . . . , xn. Since
the absorption parts of the generators of (X1(t), . . . , Xn(t)) and (Y1(t), . . . , Yn(t)) are
the same, we have the same inequality for expectations of positive definite functions
as in Theorem 1. Therefore, we have the following result on positivity of correlations
in the stationary state. This has once more to be compared to the analogous situation
of the boundary driven exclusion process, where the covariances of site-occupations
are negative.

Proposition 8. Let µL,R denote the unique stationary measure of the process with
generator (9.1). Let x1, . . . , xn ∈ {1, . . . , N}, then we have

∫

D

(

n
∑

i=1

δxi
, η

)

µL,R(dη) ≥
n
∏

i=1

∫

D(δxi
, η)µL,R(dη) (9.16)

In particular, ηx, x ∈ {1, . . . , N} are positively correlated under the measure µL,R.

Proof. Start from the measure νm
λ . Define the map {0, . . . , N + 1}n → R:

(x1, . . . , xn) 7→
∫

D
(

n
∑

i=1

δxi
, η

)

νm
λ (dη) =

n
∏

i=0

ρ(xi) (9.17)

where ρ(x) = λ
1−λ

for x ∈ {1, . . . , N} and ρ(0) = ρL, ρ(N + 1) = ρR. This is clearly
positive definite. Therefore, for x1, . . . , xn ∈ {1, . . . , N}, we have

∫

D

(

n
∑

i=1

δxi
, η

)

µL,R(dη) = lim
t→∞

∫

EηD
(

n
∑

i=1

δxi
, ηt

)

νm
λ (dη)

= lim
t→∞

∫

Ê
SIP,abs
x1,...,xn

(

D(

n
∑

i=1

δXi(t), η)

)

νm
λ (dη)

≥ lim
t→∞

Ê
IRW,abs
x1,...,xn

(

∫

D(

n
∑

i=1

δXi(t), η)ν
m
λ (dη)

)

=
n
∏

i=1

lim
t→∞

Ê
IRW,abs
xi

ρ(Xi(t))

=

n
∏

i=1

∫

D (δxi
, η)µL,R(dη) (9.18)

where we denoted Ê
SIP,abs for expectation over SIP (m) particles absorbed at {0, N+

1}, and Ê
IRW,abs for expectation over a system of independent random walkers (jump-

ing at rate 2) absorbed (at rate 1) at {0, N + 1}.
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Remark 1. Proposition 8 is in agreement with the findings of [7], where the co-
variance of ηi, ηj in the measure µL,R was computed explicitly, and turned out to be
positive.

Remark 2. For the nearest neighbor SEP on {1, . . . , N} driven at the boundaries, we
have self-duality with absorption of dual particles at {0, N = 1} and duality function

DSEP

(

n
∑

i=1

δxi
, η

)

=

n
∏

i=1

ηxi

where η0 := ρL, ηN+1 = ρR. Since for SEP particles we have the comparison inequality
of Liggett, we have as an analogue of (9.16) in the SEP context,

∫ n
∏

i=1

ηxi
µL,R(dη) ≤

n
∏

i=1

∫

ηxi
µL,R(dη)

i.e., ηxi
are negatively correlated. This is in agreement with the results in [13], where

the two-point function of the measure µL,R is computed, and with the work of [5],
where some multiple correlations are explicitly computed.
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