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Interface Energy in the Edwards-Anderson model
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We numerically investigate the spin glass energy interface problem in three dimensions. We
analyze the energy cost of changing the overlap from −1 to +1 at one boundary of two coupled
systems (in the other boundary the overlap is kept fixed to +1). We implement a parallel tem-
pering algorithm that simulates finite temperature systems and works with both cubic lattices and
parallelepiped with fixed aspect ratio. We find results consistent with a lower critical dimension
Dc = 2.5. The results show a good agreement with the mean field theory predictions.

INTRODUCTION

It is by now a well-established fact (numerically) that spin glass models with nearest neighbour
interactions have a finite transition temperature in spatial dimension D = 3 at zero magnetic field [5],
moreover the predictions of broken replica theory are well in agreement with the numerical data [8].
However the value of the lower critical dimension Dc, i.e. the dimension above which there is a phase
transition at strictly positive temperature, is still debated and there have been different predictions
based on different approaches. The initial investigations, in the framework of the droplet approach,
used the stiffness exponent θ to conclude that, at zero temperature, θ > 0 in D = 3 and θ < 0 in
D = 2, thus implying 2 < Dc < 3 [2]. The absence of a transition in D = 2 was confirmed also by
direct numerical simulations [9], that strongly suggest that the lower critical dimension is greater than
2.
A recent numerical study by Boettcher [1] reached the conclusion that Dc = 2.5 by measuring the
stiffness exponent in various dimensions and making a best fit for its dimensional dependence which
gives θ = 0 for Dc = 2.5.
An alternative approach has been put forward by Franz, Parisi, Virasoro in [6]. Here to measure
the stability of the low temperature spin-glass phase against thermal fluctuations, the energy cost
associated to imposing a different value of the overlap along one spatial direction has been considered.
Remarkably [6] founds, using an analytical computation based on a mean-field approximation, the
same result of the stiffness approach, i.e. Dc = 2.5.
However the approach introduced in [6] has not yet been tested on a finite-dimensional model. This is
the aim of this work. We find numerical results compatible with the prediction Dc = 2.5, even though
strong finite size effects prevent a final answer.

THEORETICAL PREDICTION

We first recall the approach of [6]. We consider two identical copies (same disorder) of a system
constrained to have their mutual overlaps on the boundaries fixed to some preassigned values. More
precisely, we take two systems with the parallelepiped geometry of Fig. (1). Each system has a base
area LD−1 and height M ; we denote by x the coordinate along the longitudinal direction of length M .
The study of systems with different aspect ratio R for determining the interface exponent has been
used in the past [7]. Each of the two systems has free boundary conditions along the longitudinal
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direction and periodic boundary conditions along the transverse direction. However the two systems
are coupled by the value of the overlap at their boundary planes. We compare the following two
situations. In the first case, which we call (++) coupling condition, we impose an overlap +1 on both
the left (x = 1) and the right (x = M) boundary plane; in the second case, called here the (+−)
coupling condition, the overlap on the left boundary (x = 1) is equal to +1 and the overlap on the
right boundary (x = M) is equal to −1. The quantity that we will be interested in is the difference
of free energies between the two cases

∆F = −
1

β
Av(logZ+− − logZ++) (1)

where β is the inverse critical temperature, Av(−) denotes the average over the random couplings and

Zab =
∑

στ

e−β(Hσ+Hτ )δ

(

1

LD−1

∑

i∈A1

σiτi − a

)

δ

(

1

LD−1

∑

i∈AM

σiτi − b

)

(2)

with a, b ∈ {±} and A1 (resp. AM ) the left (resp. right) boundary plane, Hσ the Hamiltonian
of the spin configuration σ. One can prove that ∆F is a positive quantity thanks to the fact that
Z+,+ ≥ Z+,−. Thus Eq. (1) seems an appropriate definition of a domain wall in spin glass models, in
full analogy with usual ferromagnetic systems where a positive domain wall is obtained by imposing
different values of the magnetization along one spatial direction.
Since free energies are not directly accessible through Monte Carlo methods [2, 3], in our simulations
we measured the differences of internal energies between the (+−) and (++) case

∆E = Av(E+− − E++) (3)

where

Eab =
∑

στ

(Hσ +Hτ )
e−β(Hσ+Hτ )δ

(

1
LD−1

∑

i∈A1
σiτi − a

)

δ
(

1
LD−1

∑

i∈AM
σiτi − b

)

Zab
. (4)

We observe that at zero temperature ∆E = ∆F . Thus, at small enough temperatures, the positivity
of ∆E follows from the positivity of ∆F by a continuity argument. However we remark that in our
numerical simulations we found always positive energy differences at all temperatures. More precisely,
for a random initial condition, the sign of E+− −E++ fluctuates at the beginning of the Monte Carlo
run and then it stabilizes to a positive sign.

For many models [6] we observe that, below the critical temperature, the free energy cost, as a
function of the transverse and longitudinal length, scales for large volumes as ∆F ∼ LD−1M−ω with
ω independent from the dimension (for T > Tc, ∆F ∼ exp(−L)). The scaling of the free energy
cost defines a lower critical dimension Dc in the usual way: for an assigned aspect ratio R = M/L
the free energy cost behaves as ∆F ∼ LD−1−ω. From this expression we see that the lower critical
dimension, the one above which ∆F increases with L and below which it vanishes with L, turns out
to be Dc = ω + 1. The mean-field computation of [6] predicts Dc = 5/2, i.e. ∆F ∼ LD−1M−3/2. In
other words, below the critical temperature, the free energy cost divided by the volume V turns out
to be independent from L and, for large L, it scales as

β∆F/V ≈ M−5/2f(β). (5)

Since the free energy difference and the internal energy difference scale with the same exponent below
the critical temperature then we also have

∆E/V ≈ M−5/2f ′(β). (6)
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Generally speaking, at the phase transition point one usually obtains by changing the boundary
conditions that

∆F → C 6= 0.

Using Widom’s scaling one gets:

∆E

V
∼ M−3+1/ν . (7)

In a given case there could be cancellations and ∆F at the critical point could go to zero with the
volume if C = 0. In ref. [3] it was shown by an explicit computation that this does not happen, at
least in the mean field case. We expect that C is a smooth function of the dimension, so that C = 0
in D = 3, would be surprising.

NUMERICAL IMPLEMENTATION

In our simulations we have considered the above mentioned geometrical set-up for the case of the
Edwards-Anderson Hamiltonian with dichotomic (±1) symmetrically distributed random couplings.
In particular, the implementation of the two systems coupled at their boundaries was obtained con-
sidering a parallelepiped with doubled size in the longitudinal direction. Denoting by y the coordinate
in the longitudinal direction of the doubled parallelepiped, the disorder variables are symmetric with
respect to the central plane y = M . The sub-systems in the half-volumes y < M and y > M interact
in the following way (see Fig (1)):
i) to keep the overlap of the spins σ and τ on the old x = 1 plane fixed to +1, the spins of the new
doubled system are identified and they lie on the plane y = M ;
ii) to keep the overlap of the spins σ and τ on the old x = M plane fixed to either ±1, the spins of the
new doubled system at position y = 1 and y = 2M − 1 are identified. The strength of the couplings
among the spins inside those planes are reduced by a factor one-half (in order to have un-biased
interactions); the couplings between nearest neighbors not lying inside those planes are flipped when
going from the (++) case to the (+−).
Note that the effective longitudinal size of the total system is 2(M − 1).

RESULTS

The data that we are going to describe concern systems with sizes 4 ≤ L ≤ 10 for the cubic lattice
whereas 4 ≤ L ≤ 8 and 4 ≤ M ≤ 25 for the parallelepiped lattice (see Tab. 1) and with 30 different
values of the aspect ratio R = M/L, ranging from 0.57 up to 6.25. The computations have been
performed implementing a multi-spin coding of the parallel tempering algorithm with 33 equally
spaced temperatures ranging between 0.6 and 2.2.
We start from the analysis of a cubic lattice (M = L). The data for the extensive internal energy
difference as a function of temperature for different system sizes are shown in Fig. (2). Below the
critical temperature Tc ≈ 1.15 the data vary weakly with the linear lattice size L. The theoretical
prediction would have been ∆F ∼ L0.5. This suggested that there might be strong finite size effects
on the energy interface cost for the small lattices we consider.

This is confirmed by the analysis around the critical temperature which is displayed in Fig. (3). For
the parallelepiped geometry, the extensive internal energy interface cost shows a different behavior
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L M sweeps sample

4

4 8192 9600

5 8192 6400

7 8192 6400

9 32768 6400

13 262144 3200

17 1048576 3200

21 4194304 3200

25 4194304 2560

L M sweeps sample

6

4 8192 6400

5 8192 9600

6 8192 6400

7 8192 6400

9 8192 6400

13 32768 3200

17 131072 1920

21 1048576 1920

25 2097152 1280

L M sweeps sample

7

4 8192 6400

5 8192 6400

7 8192 6400

9 8192 6400

13 65536 6400

17 524288 3200

21 8388608 1280

25 8388608 1280

L M sweeps sample

8

5 8192 6400

7 8192 6400

9 8192 6400

13 65536 3200

17 524288 1920

TABLE I: System size parameters for the numerical simulations.

when plotted versus the aspect ratio R = M/L or against the “corrected” aspect ration R̃ = (M−1)/L
(see the panels (a) and (b) of Fig. (3)). Even though these two characterizations of the aspect ratios
are totally equivalent in the thermodynamic limit, the data show a marked difference in the two cases.
To better appreciate this difference we show in the lower panels (c) and (d) of Fig. (3) the same data

multiplied by eAR on the left and eAR̃ on the right, where A = 0.77 has been computed fitting to an
exponential form the behavior of the data at large R (or R̃, it gives the same A). We do not claim
an exponential dependence, we merely used the exponential re-scaling from the fit to make the data
variation more visible.

To extract sensible information from our data, a careful analysis of the dependence of ∆E from L and
M is required. Fig. (3) tell us that it is difficult to make an analysis of the data as a function of the
aspect ratio [4]. Thus we start from the expected behavior of very large systems

∆E ∼ L2f(M)

which is suggested by the general argument that each of the L2 spins on each plane give the same
contribution. Thus, for the small finite systems we have, we study the dependence on 1/L for a
fixed M . Since we want to study the behavior for systems with longitudinal size much smaller than
transverse size, we must limit the analysis to small values of M .
At critical temperature we expect the scaling of Eq. (7), i.e.

∆E

L2
∼ M−2+1/ν

Figure (4) shows that ∆E
L2 (M − 1)1.43 does not depend on L for large L values. This implies a value

of 1/ν = 0.57 to be compared to 1/ν = 0.408 of [5]. The predicted value of our exponent should be
1.75. We think that the difference between 2.45 and the predicted value (1.75) is not worrisome given
the fact that the value of ν was computed in [5] using lattices (up to 403) that are much larger of ours
and, historically, previous determinations of 1/ν on smaller lattices gave large values of 1/ν.

Below the critical temperature we expect the scaling of Eq. (6), i.e.

∆E

L2
∼ M−3/2
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In Fig. (5) we show ∆E
L2 (M − 1)3/2 versus 1/L. The behavior is described by a fit of the form

aM + bM
L . The slope bM is increasing with M while the intercept aM is instead constant in M . In

Fig. (6) we show aM (M − 1)−3/2 versus M − 1 in log-log scale. The data nicely fall on a straight
line with a constant slope a. The best fit on bM gives k(M − 1)−δ + h with k < 0 and δ = −0.22
if M ∈ {4, 5, 7, 9, 13} while δ = −1/2 excluding the values M ≥ 9. Thus it would imply that the
correction bM

L converges to zero for large volumes with an assigned aspect ratio.

Summarizing, we have found that in the regime M << L the data for ∆E are well described by the
following behavior

∆E ∼ L2(M − 1)−3/2

(

a+
bM
L

)

which is compatible with the prediction Dc = 2.5.
It would nice to study the scaling property of the interface energy as a function of both variables
L,M . In particular one would like to study the dependence when both L and M grow with a fixed
aspect ratio. In Fig. (7) we plot ∆E

L2 (M − 1)3/2 versus (M − 1)/L at temperature T = 0.6. We see
that there is not a global clear scaling of the data. We tried also the aspect ratio scaling in the spirit
of [4], according to which ∆E = c0(R)Lθ0(R). We found very large oscillations in the exponent θ0.

We tried to cure the finite size effects by considering the scaling ∆E =
(

c0(R) + c1(R)
L

)

Lθ1(R) but we

have too few points and the final errors have a too large error. One would need larger lattices and
smaller errors on the data to reach a definite conclusion.
At this stage it is difficult to assign a precise error on ω because of the limited range of L (4− 10); for
such small lattices it would be mandatory to consider corrections to scaling and the fits would become
unstable.

Acknowledgments: we thank E.Brezin and S.Franz for interesting discussions.
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FIG. 1: From two copies of longitudinal size M to one system of longitudinal size 2(M − 1).
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FIG. 2: Cubic lattice: extensive internal energy cost of an interface versus the temperature.
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FIG. 3: ∆E as a function of M/L (panel (a)) and as a function of (M − 1)/L (panel (b)) at temperature

T = 1.1; ∆EeAM/L as a function of M/L (panel (c)) and ∆EeA(M−1)/L as a function of (M − 1)/L (panel
(d)). A is 0.77. In each panel the different curves refer to different L values.
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FIG. 4: ∆E
L2 (M − 1)1.43 versus 1/L at temperature T = Tc.
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FIG. 5: ∆E
L2 (M − 1)3/2 versus 1/L at temperature T = 0.6.
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FIG. 6: The intercepts of Fig. (5) as a function of M−1 at temperature T = 0.6 in log-log scale. The straight

line is the best fit of the form a(M − 1)−3/2.
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FIG. 7: ∆E
L2 (M − 1)3/2 versus (M − 1)/L at temperature T = 0.6.
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