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Abstract

Atypical, rare trajectories of dynamical systems are important: they are

often the paths for chemical reactions, the haven of (relative) stability of

planetary systems, the rogue waves that are detected in oil platforms, the

structures that are responsible for intermittency in a turbulent liquid, the

active regions that allow a supercooled liquid to flow... Simulating them in

an efficient, accelerated way, is in fact quite simple.

In this paper we review a computational technique to study such rare

events in both stochastic and Hamiltonian systems. The method is based

on the evolution of a family of copies of the system which are replicated or

killed in such a way as to favor the realization of the atypical trajectories.

We illustrate this with various examples.

1 Introduction

When a dynamical system is complex enough, it becomes no longer feasible

– or indeed, interesting – to describe every possible trajectory. A first step is

then to study what a ‘typical trajectory’ does. For Hamiltonian dynamics,

Statistical Mechanics provides us with powerful techniques to compute some

properties of such typical trajectories, but for generic dynamics we must in

most cases resort to simulations.

There are many situations in which the trajectories that matter are not

the typical ones, but rather ‘rare’ ones reached from exceptional initial con-

ditions, or particularly infrequently. Consider the following examples:
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• Planetary systems are in general chaotic, and the different sets of

present conditions, falling within the range of observational error, may lead

to widely varying inferences about the past and future. Because we do not

expect that an observed system has been created recently, or will be de-

stroyed immediately, we must understand how this comes about, and we are

naturally led to a statistical study of the trajectories.

• Molecular dynamics is in many cases characterized by long periods of

vibrations around a local metastable configuration, punctuated by relatively

rapid but infrequent ‘activation’ events, leading to a major rearrangement.

Because they are the essential steps of chemical transformations, it is of the

greatest importance to be able to simulate such events in an accelerated way,

without having to wait for them to happen spontaneously. There is a vast

literature on this subject.

• In a similar fashion, supercooled liquids and glasses are characterized

by vibrational dynamics, with events localized in time and space where the

transformations take place. These ‘dynamic heterogeneities’ are the ana-

logues of reaction paths in chemical systems.

• It has long be known that, in a liquid undergoing fully developed turbu-

lence, due to the presence of abnormally large fluctuations of velocities, the

dynamics are intermittent. The natural question is which dynamic features

are responsible for this.

• In the sea there have been reports of (‘rogue’) waves of exceptionally

large amplitudes. They are rare, but much more common than one would

expect from a Gaussian distribution. The subject is of obvious interest, and

is still very much open.

• Transport of energy or particles across a sample is facilitated by ex-

ceptional ‘ballistic’ trajectories, or hindered by situations resembling traffic

jams.

• When a system is subject to external forcing, the power injected (or

the entropy production) during a given time is a quantity that depends on

the particular trajectory it is following. The Second Law of thermodynamics

sets limits on the expectation value of these quantities, but does not limit

the extent of the (rare) fluctuations. Thus, one may extract work from a

system while lowering the total entropy, but the probability of this goes

down exponentially with its size, and with the interval of time.
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All of these problems may be studied by simulating repeatedly, or for

long times, the true dynamics. However, as one may imagine, this procedure

soon becomes unfeasible. There are basically two types of methods to gener-

ate in a controlled way rare events. The Path-sampling method amounts to

Monte Carlo dynamics in trajectory space, correctly designed to weigh each

trajectory with the desired bias. A second strategy works directly in con-

figuration space: one introduces a population of copies of the initial system

and relies on a mixture including the original dynamics, supplemented with

a ‘Darwinian pressure’ – again, in a controlled way– to favor the exploration

of atypical trajectories. In this review we concentrate on the second class.

The paper is organized as follows. The population dynamics with cloning

is introduced in Section 2, where it is shown how it can be used to compute

the large deviation function (or rather its Legendre transform) of extensive

observables of the trajectories of a diffusive dynamics with drift and a mul-

tiplicative (cloning) term. The relative weight of the drift and cloning terms

is analyzed in section 3, where it is shown how a change of bases can help

in adjusting their relative contribution. Then a series of examples from dif-

ferent contexts follows. Purely stochastic systems are studied in sections 4

and 5, where the large deviations of, respectively, the current in interacting

particle systems and the dynamical activity in kinetically constrained models

are analyzed. Sections 6 and 7 consider examples of deterministic dynamics,

such as the standard map and the Hamiltonian Fermi-Pasta-Ulam model,

for which trajectory with large or small Lyapunov exponent are studied, or

the Sinai billiard, for which the symmetry associated with the fluctuation

theorem is easily verified. The last Section 8 suggests how the numerical

method of cloning could be used also in the study of the stability of plane-

tary systems.

2 Population dynamics

To fix ideas, consider a noisy dynamics for a vector x whose components

evolve as:

ẋi = fi(x) + ηi(t) (2.1)

with ηi a noise which for simplicity we shall suppose is Gaussian and white,

with variance 2Ti. The probability of a trajectory up to time t is found by
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writing ηi = ẋi − fi(x) :

P [x(t)] ∝ e
−

∑
i

∫ t
o dt
′ (ẋi−fi)

2

4Ti (2.2)

As an example, we wish to calculate the probability that a certain quantity

A[x] takes a time-averaged value Ao:

p(Ao) =

∫
D[x]P [x(t)]δ

{∫ t

o

dt′ A(x)− tAo
}

(2.3)

It is more practical to compute the Laplace transform:

Zt(α) =

∫
dAo p(Ao)eαtAo =

∫
D[x]P [x(t)]e{α

∫ t
o dt
′ A(x)}

∝
∫
D[x]e

−
∑
i

∫ t
o dt
′ (ẋi−fi)

2

4Ti
+α

∫ t
o dt
′ A(x)

(2.4)

In particular, for large times p(Ao) becomes a peaked function p(Ao) ∼
e−tI(Ao), with I(Ao) the large deviation function given by the Legendre trans-

form [1]:

I(Ao) = sup
α

[
Aoα− lim

t→∞

1

t
logZt(α)

]
(2.5)

The last of equations (2.4) may be interpreted as a sum over paths with a

modified weight, and may be simulated with path sampling methods. The

strategy we describe in this paper is instead to notice that Eq. (2.4) may be

interpreted as describing the following dynamics:

• Consider a population of infinitely many non-interacting ’clones’ of the

system xa(t) satisfying the original dynamics ẋa(t) = f(xa)+ ηa. The

noise of each clone is independent from the others.

• At each time interval δt, each clone is either killed or replicated, so that

it is replaced on average by exp(αA(xa) δt) clones.

This population dynamics is such that the average cloning or pruning rate

of clones yields at large times Zt(α). In practice, we do not simulate infinitely

many clones of the initial system and we explain in the following how to

adapt the dynamics to work with a large, but finite, fixed number of clones

(typically in the hundreds). We shall see how this simple idea, originally

applied in the context of Diffusion Monte Carlo [2], may be adapted to a
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number of different problems. The actual specific form of the population

dynamics involved depends on the nature of the problem (continuous or

discrete state space, continuous or discrete time, etc): we shall specify this

in each example below. Similar strategies to simulate rare events have been

advocated in other context with great success, see for example [3, 4, 5].

We have mentioned so far large deviations of a quantity of the form:

F [x(t)] =

∫ t

o

dt′ A(x(t′)) (2.6)

In many cases, the functionals F depend also on the time-derivatives dx
dt

, and

even are functions that are non-local in time. In these cases, the cloning rate

at time t depends as well on the configurations at time t′ < t.

The algorithms presented in this review give not only access to large

deviations of the observable F but also allow one to compute the average

of any observable among the corresponding, atypical, histories weighted by

eαF , allowing to answer questions such as “what happens with the vorticity

of a fluid at a time and place where energy dissipation is unusually large?”

The average of an observable O at the final time t

O(α, t) =
〈eαFO(x(t))〉
〈eαF 〉 (2.7)

is recovered from the corresponding average among the clones at that time.

The averages at intermediate times (for 0 � t′ � t) O(α, t′) = 〈eαFO(x(t′))〉
〈eαF 〉

may also be recovered by attaching to each clone at time t′ the observed

value of O, and then constructing the average O(α, t′) among the clones

which have survived until the final time t. In the large time limit t → ∞,

this average is not sensitive to the precise value of t′ and a better sampling

is achieved by attaching to each clone the average value of O around time

t′ [6, 7, 8].

3 Biasing the stationary distribution: drift versus cloning

Equation (2.4) is nothing but the path-integral representation of the equa-

tion:

dP

dt
= −HαP (3.1)
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with P (x) the probability distribution, and:

Hα = −
∑
i

Ti
∂2

∂x2
i

+
∑
i

∂

∂xi
fi − αA (3.2)

The three terms in Hα correspond to diffusion, drift, and cloning, respec-

tively.

The technique of dynamic importance sampling can always be used to

reshuffle the importance of drift and cloning. It is implemented by making

a change of basis:

H̃α = eφ(x)Hαe
−φ(x) =

∑
i

−Ti
∂2

∂x2
i

+
∑
i

∂

∂xi
f̃i − Ã (3.3)

with:

f̃i = fi + 2Ti
∂φ

∂xi

Ã =
∑
i

[
Ti

(
∂φ

∂xi

)2

+
∂φ

∂xi
fi + Ti

∂2φ

∂x2
i

]
+ αA (3.4)

In general, there is not an optimal choice for the field φ. We will see examples

later in different contexts. Another way to understand (3.3) is to consider

the dynamics (2.4) with a modified large deviation function:

A→ A+
dφ

dt
; F =

∫ t

0

A(t′) dt′ + φ(t)− φ(0) (3.5)

Writing dφ
dt

=
∑

i
∂φ
∂xi
ẋi and expressing ẋi in terms of the equation of motion,

we recover the result (3.3), (3.4). Alternatively, we may of course always

consider the modified dynamics as the original one with a cloning rate A+ dφ
dt

.

Trajectories are thus reweighted according to initial and final configu-

rations. The many-time expectation with respect to the original dynamics

〈O(t1)O(t2)...O(tn)〉 for t1 < t2 < . . . < tn , starting from a distribution

Po(x), corresponds to averages with the modified dynamics of 〈O(t1)O(t2)...O(tn)eφ(tn)〉,
starting from a distribution eφPo(x).

It is important to realize that this is not the usual Monte-Carlo impor-

tance sampling technique used in equilibrium simulations, which consists

simply of modifying the energy in the sampling protocol E → E + B (for
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some suitably chosen B), and compensating by calculating averages as fol-

lows:

〈O〉E → 〈OeβB〉E+B (3.6)

where 〈•〉E stands for average using a Monte Carlo scheme with energy E.

With such a technique, one cannot calculate many-time correlation functions,

or trajectory probabilities, since the dynamics are unrelated to the original

ones; as one can see easily for the case B = −E where the modified dynamics

are simple diffusion, unlike the original ones. In out of equilibrium situations,

we do not have an explicit expression for the stationary distribution, and

there is no simple way to modify the dynamics in order that they remain

probability conserving and have a biased measure, i.e. there is no analog of

(3.6).

3.1 Computing large moments of instantaneous

quantities: the example of turbulence.

It sometimes happens that we are interested in calculating the moments of

an instantaneous quantity. Consider for example the case of Navier-Stokes

equations for driven turbulence. A set of quantities that characterize inter-

mittency are the so-called longitudinal-structure functions [9]

Sp(R) = 〈|v(x + R)− v(x)|p〉 = 〈ep ln |v(x+R)−v(x)|〉 (3.7)

In order to compute these moments efficiently, we put, in the notation of the

previous paragraphs:

φ =
p

2
ln |v(x + R)− v(x)|2 (3.8)

We may run several parallel simulations of fully developed turbulence in

the stationary state, each with its own realization of stochastic stirring, and

supplement this with a cloning/pruning rate equal to the time-derivative

of (3.8), which may be expressed in terms of the instantaneous velocities

using the Navier-Stokes equations. The total average cloning rate yields,

for large times, Sp(R). Perhaps more interestingly, the configurations that

dominate the modified dynamics are the ones that contribute to Sp(R), and

are continuously being sampled. To the best of our knowledge, this strategy

has not been implemented yet.
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4 Transport

We now describe large deviations in non-equilibrium stochastic models of

transport. In such models the main observables (e.g. the current, the den-

sity, etc.) are functions of the sample path of a Markov chain in a high-

dimensional state space.

4.1 Discrete-time Markov chains

Imagine a discretization in space of the noisy dynamics (2.1), so that the

phase space is given by a finite set of configurations. If we assume that

also time is discretized then the dynamics can be described by a Markov

chain {xn} with (n = 1, 2, ..., t) . The evolution is specified by a transition

probability matrix whose elements are p(x, y) = P (xn+1 = y|xn = x) and

by an initial distribution P (y) = P (x0 = y). We consider a functional

F [xn] which is the sum of the local contributions to the current, an additive

function of the transitions along the trajectory up to time t:

F = F (x0,x1, . . . ,xt) =
t∑

n=1

f(xn−1,xn) (4.1)

Note that f is, unlike the example in the introduction, a function of the posi-

tion at two successive times. For instance if one considers particles diffusing

on a one dimensional lattice and chooses f(xn−1,xn) to be ±1 depending on

whether particles jump to the right or the left, F is the time-integrated cur-

rent flowing through the system from left to right. The ’partition function’

(2.4) is given by

Zt(α) = 〈eαF (x0,x1,...,xt)〉 (4.2)

=
∑

x0,x1,...xt

P (x0)p(x0, x1) · · · p(xt−1, xt)e
αf(x0,x1) · · · eαf(xt−1,xt)

Just as in the previous section, we replace the initial evolution, given by a

transition matrix p(x, y), by a new evolution, given by a matrix p(x, y)eαf(x,y).

We may decompose this as a probability conserving transition matrix [6]:

pα(x, y) = p(x, y)eαf(x,y) 1

k(x)
(4.3)

and a cloning factor

k(x) =
∑
y

p(x, y)eαf(x,y) . (4.4)
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We then have

Zt(α) =
∑

x0,x1,...xt−1

P (x0)pα(x0, x1) · · · pα(xt−2, xt−1)k(x0) · · · k(xt−1) (4.5)

The convenient way to simulate (4.5) is to consider a cloning step of average

factor k(x) followed by an evolution step with the transition matrix pα(x, y).

The former may by implemented by substituting a given configuration by

a number (0, 1, 2, ...) of equal clones, with expectation value of the number

equal to k(x), while the latter is a transition with probability pα(x, y)1. All

in all, N (n, x) - the number of clones of in a configuration x at time n -

evolves as

N (n+ 1, y) =
∑
x

pα(x, y)k(x)N (n, x) (4.6)

This yields immediately that Zt(α) is given by the ratio between the

average total population at time t and the population at time 0 (at initial

time every individual or clone has type distribution P (x0))

Zt(α) =
N (t)

N (0)
(4.7)

To cope with possible extinction or explosion of the initial population one

works with increments [6]

Zt(α) =
N (t)

N (t− 1)

N (t− 1)

N (t− 2)
· · · N (1)

N (0)
(4.8)

This allows to keep the population size constant during a simulation (with a

uniform sampling after the cloning with average factor k(·)) and the Zt(α)

will be given by the products of all renormalization factors.

There are many ways of implementing the Diffusion Monte Carlo dynam-

ics described by (4.3) and (4.4), which have been extensively discussed in the

literature [10, 11]. For instance, one may choose to run the clones sequen-

tially, rather than simultaneously, and use any cloning events as the starting

point of new simulations [4]. This makes the algorithm easier to parallelize

by reducing the overhead but the total number of clones is then harder to

control.
1 The evolution step can be easily parallelized by splitting the total population of clones over

several nodes. The cloning step however creates an overhead since one may have to copy clones

from one node to another.
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4.2 An example: the totally asymmetric exclusion process

The Exclusion Process on a lattice consists of particles which jump to their

neighboring sites at a given rate, conditioned to the fact that the arrival site

is empty. The large deviations of the total particle currents of a periodic

chain of N sites with total asymmetry (TASEP) was considered in [6]: in

this case only jumps to the right are allowed.

The technique described above amounts to running various independent

copies of the chain, but cloning a copy in configuration x with an average

rate proportional to

k(x) = 1+
(eα − 1)

N
× [number of particles in x with a free site to their right] (4.9)

The numerical results obtained for Zt(α) were compared to the analytic ones

of Ref. [12] finding an excellent agreement with a very modest numerical

effort. Moreover the algorithm allowed to probe the configurations of the

system which are responsible for anomalous small value of the current, the

shocks, and, in the case of a moving shock, to follow the evolution of the

second class particle which set the front of the shock. In Figure 1 we show

Figure 1: A shock in the TASEP. Space-time diagram for a ring of N = 100

sites, α = −50/N and density 0.5. Time evolution of a single clone. The shock is

dense and does not advance. Note the logarithmic scale on the y-axis.

a space-time diagram of the system with N = 100 particles, density 0.5
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and α = −50/N . The simulation was done with L = 1000 clones, each of

them initialized with random (uniform) occupancy numbers, such that the

configuration had density 0.5. As predicted by the theory [12] for this value of

the density, the shock does not drift, although different initial conditions lead

to different shock positions. Figure 2 shows the case α = −30/N , and density

0.3: we see that the shock has a net drift to the right, again as predicted by

the theory. Let us note here that the configuration corresponds to the end of

Figure 2: A moving shock in the TASEP. Space-time diagram for a ring of

N = 100 sites, α = −30/N and density 0.3. The shock drifts to the right.

the time-interval; but one could have sampled one at an intermediate time

as explained just below Eq (2.7).

The cloning algorithm has been applied for transport models such as the

asymmetric exclusion process and the Kipnis-Marchioro-Presutti model [13,

14, 15] and to study symmetries in fluctuations far from equilibrium [16].

Such studies are useful as a test for the predictions of Fluctuating Hydro-

dynamics [13, 17], but also to probe the limits of the cloning method itself,

when insufficient clone number may yield misleading results (a test criterion

has been devised in [14]).
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4.3 Continuous-time Markov chains

Many systems have dynamics that are naturally defined in continuous time.

For instance, spin flips in the Ising model, that takes the system from a

configuration x to another one y, can occur at any time with a given rate

W (x→ y). To simulate such systems, one can discretize time and the choose

a small time step dt, (transition probability writing p(x, y) = dtW (x →
y)). One then distinguishes between time steps during which a configuration

change occurs (with probability, say, dtW (x→ y)) and those where nothing

happens (with probability 1−dt∑yW (x→ y)). Doing this in the algorithm

described in the previous sections, one arrives in the limit dt → 0 at a

continuous time version of the cloning algorithm.

One can however also work directly with continuous time simulations.

Each configuration x has a total escape rate r(x) =
∑

yW (x → y), which

is the rate at which the system jumps from configuration x to any other

configuration. One can choose a time interval δt from an exponential clock,

with probability p(δt) = r(x) exp[−r(x)δt], update the time t→ t+ δt, and

then decide which configuration changes to make. Going from x to y then

occurs with probability W (x → y)/
∑

zW (x → z). For traditional Monte

Carlo algorithms, this method has two advantages. First, one does not have

to decide which dt to use and the algorithm makes no discretization error.

Second, there are no rejection events which can slow down severely discrete

time simulations. However all this comes at the cost of having to generate

two random numbers per configuration change (one for the time at which the

change occurs, one for the target configuration) while discrete time Monte

Carlo only needs one.

When simulating rare events, the continuous time method is more cum-

bersome to implement but overcomes the problem of diversity of time scales

typically met in these simulations. For instance, depending on the value

of the bias α, the TASEP presented above explores trajectories where the

average time between two events ranges from order 1 (in a traffic jam, only

the leading particle can jump forward) to order 1/N (when all particles can

jump forward). When working with continuous time, the adjustment of the

time-step is automatic. In other systems, such as the kinetically constrained

models presented in section 5, the situation is even worse. A typical tra-

jectory can explore successive configurations where the waiting times may
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change by a factor of the order of the system size. In such case, a discrete

time algorithm with a time step small enough to resolve the rapid configura-

tion changes will have a prohibitively large number of rejection events when

visiting the slow configurations.

To work directly in continuous time, as exposed in [18], the idea is to

write the dynamical partition function as a sum over allowed values of F

(cfr eq (2.6)):

Zt(α) = 〈eαF 〉 =
∑
x

∑
F

eαFP (x, F, t)︸ ︷︷ ︸
≡P̂ (x,α,t)

(4.10)

where P (x, F, t) is the probability density of being in configuration x at time

t, and having observed a value F of the dynamical observable. The quantity

P̂ (x, α, t) is its Laplace transform. As in (4.1), we can choose F to be the

sum of contributions f(x → y) occurring at each configuration change. For

instance, taking f(x → y) = +1 (resp. −1) each time a particle jumps to

the right (resp. left) in a 1d particle system corresponds to F being the

total particle flux flowing through the system from right to left. We can also

consider the case where F depends on the time average of some observable

A(x), as in the introduction (see [18, 8]):

F =
K∑
k=1

f
(
xk−1 → xk

)
+

∫ t

0

dt′ A(x(t′)) (4.11)

where (x0 . . . xK) is the sequence of visited configurations of a given history

presenting K changes of configurations. A(x) can for instance be the mag-

netization of the configuration x of a spin system and one is then looking for

trajectories that have atypical time average of the magnetization.

From the equation of evolution obeyed by P (x, F, t), one obtains the

evolution of P̂ (x, α, t):

∂tP̂ (x, α, t) =
∑
y

eαf(y→x)W (y → x)P̂ (y, α, t) (4.12)

−
∑
y

W (x→ y)P̂ (x, α, t) + αA(x)P̂ (x, α, t)

which is of the form ∂t|P̂α〉 = −Hα|P̂α〉 where |P̂α〉 is the vector of compo-

nents P̂ (x, α, t). Just as in Eq (3.2), the modified operator of evolution Hα

does not conserve probability if α 6= 0. We have to proceed as in the steps

13



leading to (4.3) and split the evolution in two contributions, one conserving

probability and the other a purely cloning term. To do so we introduce the

modified transition rates Wα(y → x) = eαf(y→x)W (y → x) and the corre-

sponding escape rate rα(x) =
∑

yWα(x → y). We can then rewrite (4.13)

as

∂tP̂ (x, α, t) =

probability conserving︷ ︸︸ ︷∑
y

Wα(y → x)P̂ (y, α, t)− rα(x)P̂ (x, α, t)

+
[
rα(x)− r(x) + αA(x)

]
P̂ (x, α, t)︸ ︷︷ ︸

cloning

(4.13)

The first part is a modified dynamics of rates Wα(y → x) while the second

part corresponds to cloning at rate rα(x) − r(x) + αA(x). The method

is then the same as for discrete time dynamics (section 4.1): one takes a

large number of copies of the system, each of them evolving in continuous

time (i) through the modified rates Wα(y → x) and (ii) subjected to a

cloning probability e[rα(x)−r(x)+αA(x)]∆t on each time interval ∆t where the

configuration does not change from x [8]. One can rescale the total clone

population to keep its size constant, storing as previously the overall cloning

factor. The dynamical partition function is then recovered from those factors

as in (4.8) and the corresponding dynamical free energy µ(α) is:

µ(α) = lim
t→∞

1

t
logZt(α) (4.14)

We provide in Appendix A an example pseudo-code for the practical imple-

mentation of the algorithm.

4.4 An example: density profiles in the ASEP

Exclusion processes (such as the TASEP studied above) are interesting trans-

port models in which the cloning algorithms can be used and in partic-

ular compared to analytical results for the cumulant generating function

µ(α) = limt→∞ lnZt(α)/t [18, 13], including finite size effects [8]. In Fig. 3,

we present an example of a mean profile at non-zero α for the asymmetric

exclusion process (compared to the TASEP, particles can jump to the left

and to the right with respective rates p and q). The parameter α is conju-

gated to the particle flux through the system. We observe on Fig. 3 that,
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Figure 3: Density profile in the ASEP. α = −0.3, α conjugated to the total

current flowing through the system. System size is 400, with 200 particles, in

periodic boundary conditions, with an asymmetry E = 1
2 log p

q = −0.2.

to minimize the overall current, the system develops an asymmetric profile,

where only the front particles can jump easily.

5 Fluctuations of Dynamical Activity

Driven systems may reach a non-equilibrium steady state, characterized by

a non-zero current the probability distribution of which can be studied as

described in the previous section. Another class of non-equilibrium systems

is given by glassy systems. In the most simple cases, these systems are out

of equilibrium not because they are driven but because their dynamics is so

slow that a macroscopic system never reaches Boltzmann equilibrium (or any

other steady state), despite the fact that the microscopic dynamics satisfy

detailed balance. In this context, it can be interesting to study trajectories

of atypical mobility, for instance to detect trajectories that are ‘faster’ or

’slower’ than average, i.e. the dynamic heterogeneity. To quantify this,

one introduces the dynamical activity [19, 20, 21] (also termed traffic [22,

23]), which provides a good description of dynamical heterogeneity in glass

models, as we now discuss.

On a time window [0, t] the dynamical activity K of a stochastic process

is the number of configuration changes undergone by the system, and is thus

a random variable that depends on the system’s trajectory.
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Kinetically constrained models (KCMs), such as the Fredrickson-Andersen [24]

or the Kob-Andersen[25] models are such that static (one-time) properties

are trivial in the most simple cases, while their dynamical properties (e.g.

two- or more times correlations) share common features with generic glassy

phenomena (see [26, 27] for reviews on KCMs). They lend themselves rather

easily for the study of their activity K, and for the analysis of the results.

Figure 4: FA model (From Merolle et al. [19]). Space-time diagram of the

FA model for atypical (a and b) and typical (c) histories. In the space direction,

active sites are represented in black dots while inactive ones are white. The pic-

ture is reminiscent of the phase coexistence of a static medium at a solid-liquid

coexistence point.

Let us focus for simplicity on the one-dimensional Fredrickson-Andersen

(FA) model. It consists in a 1d lattice of L sites. Each site is either excited

(low density, active) or unexcited (high density, inactive). The sites may

flip from inactive to active (at rate c), and from active to inactive (at rate

1− c). These transitions are allowed on a given site provided at least one of

the neighboring sites is active. This is the kinetic constraint, introduced as a

way to mimic the facilitated dynamics of molecular glasses, whereby active

regions enhance activity in their neighborhood. Clearly, for small values of

c, the dynamics becomes very slow.

It was observed in [19] that the FA model presents “dynamical coexis-
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tence” of active and inactive regions in space-time (see Fig. 4), very similar

to the phase coexistence of liquid and solid at the coexistence point in a first

order static phase transition – if one forgets that one direction in Fig. 4 is

the time.

The activity K of a configuration is defined as the number of active

sites. In practice, one may weight the trajectories followed by the system

by a factor e−sK , to favor active (s < 0) or inactive (s > 0) histories (in

this section we take the convention s = −α to follow the notation in the

literature on KCMs). If the observed coexistence disappears for s 6= 0 (that

is, if there is a dynamical phase transition), it means that the system indeed

sits on a first-order dynamical coexistence point at s = 0.

The continuous time cloning algorithm [18] exposed in section 4.3 enables

us to compute numerically the dynamical partition function

Zt(s) = 〈e−sK〉 ∼ etµL(s) (5.1)

for this system and other KCMs [28, 7] The average is taken on histories of

duration t, in the large t limit, at fixed system size L. The non-analyticities

of the dynamical free energy µL(s) in the large-size limit, signal the existence

of a dynamical phase transition.

5.1 Dynamical phase coexistence

As shown in [28, 7], several KCMs display a phase transition, in the large

system size limit, between an active phase (s ≤ 0) where the dynamical free

energy 1
L
µL(s) is finite, and an inactive phase (s > 0) where is identically

zero (see Fig. 5, left, for the 1d FA model). The mean density of active sites

(see Appendix A for details on the practical computation of such a weighted

mean)

ρL(s) =
〈e−sK 1

t

∫ t
0

1
L

∑L
i=1 ni〉

〈e−sK〉 (5.2)

(here ni ∈ {0, 1} is the activity at site i) also characterizes this transition

(Fig. 5, right): it remains finite in the active phase s ≤ 0 (a finite fraction

of sites is active) while it goes to zero in the inactive phase (only a finite

number of sites remains inactive). Several other glass formers display the

same phenomenology (see [29] for a review), representative of dynamical
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Figure 5: FA model (From Garrahan et al. [28]). Numerical evaluation

of the “dynamical free energy” 1
LµL(s) (left) and the density of occupied sites

ρL(s) (right) for histories weighted by e−sK . As the system size increases, 1
LµL(s)

approaches its singular limit where 1
LµL(s) is zero for s > 0. In the same limit, the

density ρL(s) displays a discontinuity at s = 0, indicating a first order dynamical

transition.

heterogeneities, that is, of the coexistence in the system of regions with high

and low dynamical activity.

An interesting question is to determine whether molecular models of

glasses, such as Lennard Jones mixtures, also present such a dynamical phase

transition. A conceptual difficulty that arises is to find a physically relevant

measure of the mobility, that generalizes the concept of dynamical activity

to this context. In [30], the activity was defined as the number of events

where particles move sufficiently far in a given time-interval, thus averaging

out short-scale vibrations, whereas in [31], the activity was taken to be a

time-average of the modulus of the forces, in a continuous version of the

model. In both approaches, numerical results support the existence of a

phase transition at some critical value sc. An open issue is to characterize

the inactive phase and to determine whether the effective finite-size critical

transition parameter sc(L) goes to 0 as L goes to infinity or not (that is to

say: does the standard dynamics at s = 0 lie exactly at the critical point?).

More generically, the phase transitions are also present in p-spin mod-

els [32] and in trap models [33], where numerical approach support analytical

results. These results are in favor of a generic link between glassiness and
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dynamical phase coexistence, whose precise nature remains to be understood.

6 Fluctuation of chaoticity in dynamical systems

As explained in the previous section, large deviation theory plays nowadays

an important role in non-equilibrium statistical physics to study and quantify

dynamical phase transitions. The first studies of large deviations of dynam-

ical observables were however inspired by another field, that of dynamical

systems. It was argued in the 70s, following the seminal works of Sinai, Ru-

elle, Bowen and others [34, 35, 36, 37] that quantitative studies of dynamical

systems should rely on a construction analogous to statistical mechanics of

trajectory space, where the quantities playing the role of energy functionals

for the trajectories are functions of the Lyapunov exponents. This line of

thought was very successful in terms of formalism and theory, but progress

was severely hampered by the difficulty of computing anything in all but

the most schematic systems. Indeed, many of the examples studied very low

dimensional systems — mostly maps of the interval, with notable exception

of the Lorenz gas [38]. As we show in the two following sections, the develop-

ment of recent methods to compute the fluctuations of Lyapunov exponents

can fill this gap and hopefully lead to new insights in the field of dynamical

systems of many bodies.

For sake of concreteness, we will focus on Hamiltonian dynamics but

one should keep in mind that the method is much more general and can be

applied, for instance, to dissipative systems. We consider a system with 2N

degrees of freedom whose dynamics is given by

ẋi = fi[x(t)]; with

x = (q1, . . . , qN , p1, . . . , pN)

f = ( ∂H
∂p1
, . . . , ∂H

∂pn
,− ∂H

∂q1
, . . . ,− ∂H

∂qN
)

(6.1)

As usual to quantify the chaoticity of a trajectory we introduce the Lyapunov

exponents. We consider an infinitesimal perturbation δx(t) whose dynamics

reads

δẋ = −A · δx; with Aij = −∂fi[x(t)]

∂xj
(6.2)

The evolution of the norm of such a perturbation is given by

d

dt
|δx|2 = −

∑
ij

2 δxiAij δxj (6.3)
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Introducing the normalized tangent vectors vi = δxi
|δx| whose evolutions are

given by

v̇i = −
∑
j

Aijvj + vi
∑
kl

vkAklvl (6.4)

equation (6.3) can be recast as

d

dt
|δx(t)|2 = −

∑
ij

2viAijvj|δx(t)|2 (6.5)

and finally solved to yield

|δx(t)| = |δx(0)|e−
∑
ij

∫ t
0 vi(t

′)Aij [x(t′)]vj(t′)dt′ (6.6)

The largest Lyapunov exponent is then given by λ = lim
t→∞

λ(t), where the

finite time Lyapunov exponent λ(t) is

λ(t) =
1

t
log
|δx(t)|
|δx(0)| = −1

t

∫ t

0

dt′
{∑

ij

vi(t
′)Aij[x(t′)]vj(t

′)
}

(6.7)

More generally, the exponential expansion of k-dimensional volume elements,

rather that vectors δx, yields in a similar way the sum of the first k Lyapunov

exponents.

To characterize the fluctuations of chaoticity amounts to sampling the

distribution of λ(t)

P (λ, t) = eS(λ,t) ∼
t→∞

ets(λ) (6.8)

One can understand that the exponent is generically extensive in time, as in

usual thermodynamic systems: one cuts a long trajectory of duration t in

many segments of duration δt much larger than the typical correlation time

τ . Each segment can thus be considered independent of the others and the

probability that the total trajectory has an exponent λ is

P (λ, t) =
∑

(λ1+···+λt/δt)δt=λt

P1(λ1, δt) . . . Pt/δt(λt/δt, δt) (6.9)

=
∑

(λ1+···+λt/δt)δt=λt

eS1(λ1,δt)+···+St/δt(λt/δt,δt) (6.10)

The exponent of each term of the r.h.s. is the sum of t/δt terms of order one

and is thus of order t. At large times, t/δt� 1, the distribution P (λ, t) con-

centrates around its typical value, and the scaling law (6.8) is thus verified.
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This scaling breaks down in the presence of diverging correlation times, a

signature of dynamical phase transitions.

As in statistical mechanics, the derivation of the entropy s(λ) is difficult

and one rather works in a “canonical” ensemble by introducing a dynamical

partition function

Zt(α) =
〈
eαtλ(t)

〉
∼
t→∞

etµ(α) (6.11)

where the average 〈 . 〉 is made with respect to P (λ, t), i.e. over initial con-

ditions, noise realizations, etc. µ(α) plays the role of −βF in statistical

mechanics, where F is a free energy, and is called topological pressure.

From the definition of the finite time Lyapunov exponent (6.7), one sees

that the computation of Zt(α) amounts to the large deviation computation

presented in the introduction, with the observable A now given by

A(x) = −
∑
i,j

viAij(x)vj; F =

∫
dtA(x) (6.12)

Let us now make a point that will be valid for all deterministic systems.

In such cases, the only source of fluctuations are the initial conditions. If the

system is chaotic enough, this should not be very important but, for example,

in the case of mixed system, starting from a regular island or a chaotic region

yields a very different result, because trajectories do not take from one to the

other. In this review we consider a shortcut to this problem which consists of

adding a small amount of stochastic noise, so that the dynamics effectively

samples the whole trajectory space (for a discussion of the low noise limit

see [40]). We thus consider a slightly different set of equations

q̇i = pi; ṗi = −∂H
∂qi

+
√

2εηi (6.13)

The algorithm presented in the introduction of this paper can now be

applied to our noisy Hamiltonian dynamics. We consider a population of N
clones in phase space of positions and momenta q and p. To each clone we

associate a normalized tangent vector v. We then choose a time step dt and a

noise intensity ε and run the simulation over a large time t = Mdt. At t = 0,

the N copies of the system start from an arbitrary initial configuration (the

noise ensures the ergodicity of the algorithm). At each time step t′ = ndt,

we do the following [39]:

1 For each clone
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• (q,p) evolve with the noisy Hamiltonian dynamics (6.13),

• v evolves according to the linearized dynamics

v̇i = −Aijvj (6.14)

• v is then renormalized to unity and we store the renormalization

factor N(n) = |v(t+dt)|
|v(t)| ' e−v

†·A·vdt.

2 Each clone of the system is then pruned or replicated, with its rate

N(n)α. To do so, we pull a random number ε uniformly between 0 and

1 and we compute2 τ = bε+N(n)αc,

• if τ = 0, the clone is deleted

• if τ > 1, we create τ − 1 copies of the clone

3 The total population is now composed of N (n + 1) clones, instead of

the initial N (n) ones. We then store R(n) = N (n+1)
N (n)

,

• if N (n + 1) < N (n), we copy N (n + 1)−N (n) clones, chosen at

random,

• if N (n+ 1) > N (n), we delete N (n+ 1)−N (n) clones, chosen at

random,

Finally, we end up again with N (n+ 1) = N (n) = N (0) clones.

The dynamical partition function is then obtained from R(n) through

Zt(α) =
M∏
n=1

R(n) (6.15)

while the topological pressure is given by

µt(α) =
1

t

M∑
n=1

logR(n) (6.16)

Let us now illustrate this algorithm, called “Lyapunov Weighted Dynamics”,

with a low dimensional system (the standard map) and a large dimensional

one (a FPU chain of 1024 particles).

2bxc is the largest integer smaller than x
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α = −0, 04 α = 0, 04

Figure 6: Typical Configurations for α = ±0, 04. Phase space trajectories of

the standard map are shown in light red whereas the trajectories localized by the

Lyapunov Weighted Dynamics appear in dark blue.

6.1 The Standard Map

The standard map is defined by the dynamics

pn+1 = pn +
kδ

2π
sin(2πqn); qn+1 = qn + δpn+1 (6.17)

with (qn, pn) ∈ [0, 1] × [−1, 1]. It is one of the traditional models used to

study transition to chaos. It goes from an integrable system when k = 0 to a

more and more chaotic one when k increases. In figure 6 we show the typical

trajectories that are localized by the Lyapunov Weighted Dynamics for very

small bias (α = ±0.04). One sees that as soon as the system is biased in

favor of integrable trajectories (α < 0), the dynamics localizes on integrable

islands, whereas a tiny bias favoring chaotic trajectories (α > 0) detects the

chaotic layers surrounding these islands.

Computing the topological pressure (figure 7) shows that the system lies

at a critical point where chaotic and integrable trajectories coexist in phase

space, in the manner of a first order phase transition.

6.2 FPU chains

Beyond the computation of dynamical free energies (or topological pressure),

the algorithm can be used to sample trajectories of atypical chaoticity. Let

us show here on a high-dimensional system, with 2048 degrees of freedom,

which are the trajectories that realize large deviations of the chaoticity in
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Figure 7: Standard map. Dynamical free energy µ(α) (red crosses) and average

Lyapunov exponent 〈λ〉α = Z−1
t (α)〈λeαλt〉 (blue squares) as a function of the

bias α. The discontinuity at α = 0 of 〈λ〉α = µ′(α) is the signature of a phase

coexistence between chaotic and integrable trajectories in space time.

anharmonic chains of oscillators. We consider the following Hamiltonian

H =
N∑
i=1

p2
i

2
+

N∑
i=1

[
(xi+1 − xi)2

2
+ β

(xi+1 − xi)4

4

]
(6.18)

where xN+1 = x1. This system, studied in the 50s by Fermi, Pasta, Tsingou

and Ulam, corresponds to N particles connected by anharmonic springs.

The limit β = 0 corresponds to an integrable case: the springs are harmonic

and the Fourier modes correspond to N independent harmonic oscillators or

frequencies

ωk = 2 sin

(
πk

N

)
(6.19)

There has been continuous interest in this model (for a review see [41]) be-

cause of its rich phenomenology, and in particular, there has been some recent

studies of the (Gaussian) fluctuations of its Lyapunov exponent [42]. As soon

as β is non-zero, the dynamics are chaotic. However, starting from well cho-

sen initial conditions, the model admits long-lived solitonic modes, related

to the Korteweg-de Vries modified equation [43]. Similarly, a modulational
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instability leads to short-lived chaotic breathers [44, 45], when energy is in-

jected in high-frequency modes. If one runs an equilibrium simulation of the

anharmonic chain, one typically observes a mixture of short-lived localized

structures (solitons, breathers) and a phonon bath (figure 8).

When applying the Lyapunov Weighted Dynamics, we add a small stochas-

tic noise to the system, taking care that the noise conserves the total energy

and momentum and thus preventing a slow, unphysical drift in these quan-

tities.

P
ar
ti
cl
es

1

128

10000 11400

time

Figure 8: Equilibrium simulations of the FPU chain (N = 128, α = 0).

Time-line of each of the 128 particles around their [arbitrary] equilibrium posi-

tions. We see a superposition of localized breathers, ballistic solitons and small

fluctuations.

If one biases the system in favor of regular trajectories, the phonons and

breathers completely disappear and we observe a long-lived gas of solitons,

propagating ballistically (see figure 9). In this case, it is important to set the

center of mass velocity to zero, because otherwise the system can eliminate

completely chaoticity by concentrating all its energy on the center of mass

motion.

On the other extreme, a bias in favor of chaotic trajectories localizes

long-lived chaotic breathers (see figure 10). We used periodic boundary
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Figure 9: Looking for regular trajectories (N = 128, α = 5N). Simulation

at fixed energy (E = 1) with fixed boundary conditions, starting from micro-

canonical equilibrium. The figure shows the time-line of each particles around its

[arbitrary] equilibrium position. Several solitons are ballistically propagating from

one end of the system to the other, where it elastically bounce of fixed boundary

condition. the Lyapunov exponent of this trajectory is equal to half the average

one.

conditions for this simulation to reduce the interactions between the wan-

dering breather and the boundaries of the system. Note that running the

same simulation in a much larger system (N=1024) shows that the breathers

are much more localized than the solitons (figure 11).

Interestingly, the values of the bias α we have to use here are not of

order one. Indeed, as N increases, the distribution of the largest Lyapunov

exponent becomes more and more peaked. Let us assume for instance that

s(λ) is extensive with some power of the system size, so that one can write

P (λ1, t) = exp[N ξts̃(λ1)] (6.20)

with s̃(λ) of order 1 in both t and N . From the expression

Zt(α) =
〈
eαλt

〉
=

∫
dλ exp[N ξts̃(λ1) + αλt] (6.21)

one sees that the integral is dominated by a value λ∗ such that:

s̃′(λ∗) = − α

N ξ
(6.22)
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Figure 10: Looking for chaotic trajectories (N = 128, α = 5N) This sim-

ulation is realized at fixed energy and total momentum (energy density E = 1)

with periodic boundary conditions. The gray level represent the total energy of

each particles. Starting from an equilibrium configuration, the dynamics reveals a

chaotic breathers whose Lyapunov exponent is three time larger than the average

one.

When N → ∞, λ∗ satisfies s′(λ∗) = 0 and is thus the typical value of the

Lyapunov exponent. One should thus use a bias that scales as α = N ξα̃ to

observe large deviations of the Lyapunov exponents. Similarly, to access the

dynamical free energy, one has to compute the exponent ξ and define

µ̃(α̃) =
1

tN ξ
logZt(α) (6.23)

Such a calculation, which, as far as we know, has not been done so far, would

tell if the FPU chain lies at a critical point where breathers, solitons and

phonons coexist in a first order phase transition manner. The computation

of the dynamical free energy for large dimensional systems is now achievable

numerically and is one of the exciting goal that are facing us.

7 Work and entropy production

When a system is subjected to an external drive, the total energy absorbed

(and the resulting entropy production), are quantities that fluctuate depend-

ing on the initial microscopic configuration of the system and on the thermal
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Figure 11: Looking for chaotic trajectories (N = 1024, α = 5N) . This

simulation is realized at fixed energy and total momentum (energy density E = 1)

with periodic boundary conditions. The gray level represent the total energy of

each particles.

bath, if there is one. Work and entropy production are important quantities,

because they concern the state of the system and are the subject of the Sec-

ond Law of thermodynamics. The Second Law as such concerns only average

quantities, and not the fluctuations. It was only relatively recently realized

that a wider framework – based on considering the effect of time-reversal

on the dynamics – allows to derive a set of relations that are obeyed by the

fluctuations – well beyond the linear regime – and yields the Second Law

constraints as particular cases.

i) The transient Fluctuation Theorem relates, in the same context, the

probability of a given work W , and that of its opposite: P (W )/P (−W ) =

eW/T [46, 47].

ii) The Jarzynski relation states that the average of e−W/T over all pro-

cesses starting from an equilibrium distribution at temperature T is one [48].

Both are very general, model-independent results, and were later shown

to be particular cases of the more general relation, Crooks’ relation.

iii) The stationary fluctuation theorem involves the same relation for the

work as the transient version, in a stationary (non-equilibrium) situation,

and is valid only in the limit of large times. The particular case in which

the dynamics is deterministic (the Gallavotti-Cohen theorem [47]) deserves

special attention: the theorem is non trivial because the nature of the sta-
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tionary distribution is then dependent upon the ergodicity properties of the

system. These conditions involve not only chaoticity properties of the at-

tractor, as one would expect from any problem in ergodic theory, but also

the fact that attractor and repellor sets are sufficiently intertwined: large

deviation trajectories that commute between them generate the reversals in

entropy production [49].

Systems with macroscopic, hydrodynamic degrees of freedom may have

extremely large fluctuations when subjected to strong forcing, due to exci-

tation of macroscopic structures [50]. The typical example is the (Rayleigh-

Bénard) convection of a fluid between a hot Th lower plate and a colder Tc
top plate [51]. The heat is transported by fluid currents that have macro-

scopic fluctuations, enormous compared with kbTh. The fluctuation theorem

as such involves the temperatures Th, Tc that are irrelevant for these fluctu-

ations. The only way in which the appearance of a Fluctuation Relation for

the hydrodynamic modes may be justified, is to invoke the existence of a large

effective temperature, related to the macroscopic fluctuations. Bonetto and

Gallavotti [52] have conjectured that this could be justified by considering

the restricted space in which the macroscopic takes place. These questions

are very much open, and in order to make progress it would be useful to

simulate the limits beyond which the fluctuation theorem ceases to hold rig-

orously, because that is where new concepts may arise. These are the limits

in which large deviations are particularly hard to observe, if one has to wait

for them to happen spontaneously.

7.1 Sinai billiard

The method of cloning has been shown to work efficiently in the verification

of the Gallavotti-Cohen theorem on a simple chaotic system given by the

Sinai billiard. This system consists of a particle moving inside a billiard

as in figure 12, with periodic boundary conditions. It is under the action

of a force field ~E, and is subject to a deterministic thermostat that keeps

the velocity modulus constant |~v| = 1. Between bounces, the equations of

motion are:

ẍi = −Ei + γ(t)ẋi, i = 1, 2;

γ(t) =
∑
i

Eiẋi. (7.1)

29



We wish to calculate the fluctuations of the dissipated power γ and thus

Figure 12: The Sinai billiard. The radii are R1 = 0.39, R2 = 0.79. We also

show an example of trajectory for the external field ~E = (1, 0).

the dynamical partition function

Zt(α) = 〈eα
∫ t
0 γ(t′)dt′〉 (7.2)

The fluctuation theorem arises from the symmetry

µ(α) = µ(−1− α)

with µ(α) = limt→∞
1
t

lnZt(α). Therefore with reference to the notation of

the first section we have now

A(x) = γ(x)

As in the previous section, the dynamics is deterministic, and hence to al-

low different clones to diversify, we introduce a small stochastic noise, (cfr

paragraph leading to equation (6.13)) and check the stability of results in

the limit of small noise. We evolve the system for macroscopic intervals T ,

and clone at time t′ = nT with a factor

kt′ = eα
∫ t′+T
t′ γ(t′′) dt′′ .

Before each deterministic step of time T , clones are given random kicks of

variance ∆ in position and/or velocity direction. The time-interval T and
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the noise intensity ∆ are chosen so that twin clones have a chance to separate

during time T , and this depends on the chaotic properties of the system. In

the present case, 0.1 ≤ T ≤ 1 allows for a few collisions, which guarantees

clone diversity for 10−3 ≤ ∆ ≤ 10−4.

In Fig. 13 we show the results of µ(α) for −2 ≤ α ≤ 1, and for ~E = (E, 0)

with E = 1 and E = 2, both corresponding to very large current deviations

(in the figure α is called λ).
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Figure 13: The Gallavotti-Cohen theorem. Plot of µ(λ) vs. λ for the driven

Lorentz gas. Data for ~E = (E, 0), E = 1, 2 and noise intensity ∆ = 10−3, 10−4.

The Gallavotti-Cohen theorem implies the symmetry around λ = −1/2. The con-

tinuous lines represents a polynomial fit, quadratic for E = 1 (Gaussian behavior),

4-th order for E = 2.

8 Planetary systems

Planetary systems are the epitome of deterministic systems. With their

relatively small number of interacting bodies, they could easily be considered

the systems that are further from statistical treatment. And yet, statistical

analysis of orbits becomes necessary: when we discover a planetary system

we find that many amongst the observationally allowed configurations are

only stable in the immediate past or future [53]. Since we do not expect that

just by chance we came across a system that has just ejected (or will soon

eject) a planet, we tend to favor amongst configurations compatible within

error with the data, those that have an unusually high level of stability.

31



On a related line, it has been shown [54] that just considering a shift in

the Earth’s present position of the order of one hundred meters, the fate of

Mercury may change dramatically, in some cases leading its orbit to intersect

the one of Venus. Consider for example the study by Laskar [54]. In a

first calculation, he integrated the orbit of Mercury starting from different

configurations, obtained by displacing the position of the earth by about

150 meters. The orbits obtained this way were qualitatively similar, and yet

different. Next, he repeated the calculation but making a few clones of the

trajectories, and choosing the one with largest eccentricity. After a few such

steps, he reached orbits with great eccentricities, that could cross the orbit

of Venus. We recognize here a strategy that is very close to the one we are

describing here, for the particular cases α = 0 and α =∞, respectively. The

small displacements are in fact playing the role of our noise.

Indeed, if at each cloning step we had cloned or killed configurations in

a fraction proportional to α times the eccentricity change during the corre-

sponding time interval (cfr. Section 3: the eccentricity plays here the role

of φ described there) we would have obtained the full probability distribu-

tion of, say, the eccentricity at each time. Denote N(α) the total number

of clones at time t obtained without normalizing the clone population, or

keeping track of the normalizations if they were done. N(α) is the Laplace

transform of the probability P (e):

N(α) =

∫
de e−αe P (e) (8.1)

Just as in the example of Sinai’s billiard, because the system is chaotic, the

displacements (or the noise level), may be essentially negligible – for example,

compatible with all other external sources of displacements which we have

neglected — and yet yield all the variety of trajectories.

It would be very interesting to see these methods applied to studying

in detail the possible future and past evolution of planetary systems, with

a large deviation statistical analysis. Many interesting questions concerning

the self-organization of the stability of our solar system could be investigated

this way.
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A Cloning in continuous time: an example pseudo-

code

In this appendix we provide an example pseudo-code for the cloning of a

system described by a configuration conf, evolving with Markov dynamics

in continuous time (see section 4.3). The dynamics of each clone consists

in a succession of (i) Poissonian waiting times (sampled with the function

random.poisson) between jumps (ii) change of configuration, or “jumps”

(performed by evolve()) and (iii) cloning, keeping the total number of clone

constant. The way in which the weighted average of a time-extensive observ-

able obs is computed is also explicited: a value of obs is attached to each

clone and copied/pruned with it.

alpha=0.1 # parameter conjugated to the observable F

N=500 # number of clones

time=0 # initial time

tmax=1000 # maximum simulation time

cloning=0 # logarithm of the global cloning factor

# at the end the ldf is given by cloning/time

conf.init() # initialization of the clones:

# conf[1] to conf[N] are set to given configurations

escaperate.init() # initialization of the alpha-dependent escape rates

obs.init() # initialize an observable obs that we want to average

# over weighted histories

# initialisation of first jump times

for c from 1 to N do:

jumptime[c]=random.poisson(escaperate[c]) # Poisson law of rate escaperate[c]

# main loop

while t<tmax do

(c,t)=next(jumptime) # returns the first clone c to jump, and its jumptime t

conf[c].evolve() # evolves the configurations clone c

# note that the observable obs is evolved accordingly

deltaT=random.poisson(escaperate[c])

# determines the time interval until the next jump

jumptime[c]+=deltaT # updates the jumptime

K=conf[c].clfact(deltaT)# yields the cloning factor

# K=e^(deltaT*(deltaescaperate[c]+alpha*A[c]))

cloning+=log((N+K-1)/N) # updates the log of the global cloning factor

k=floor(K+random.real())# integer number k representing the number of clones

33



# replacing the current clone c

cases

k=0: # clone c is suppressed, i.e. replaced by another one chosen at random

do newc=random.integer(N) while newc==c

conf[c]=conf[newc]

obs[c]=obs[newc]

jumptime[c]=jumptime[newc]

k=1: # nothing is done

k>1: # k-1 copies of c have to be done; then, among the total N+k-1

# resulting clones, k-1 of them are pruned so as to keep N constant

indices=randomarray(N,k)

# puts in indices k-1 *different* random integers between 1 and Nclones+k-1

# (both included); only those less or equal than N will be replaced by c

for newc in indices do:

if newc<=N do:

conf[newc]=conf[c]

obs[newc]=obs[c]

jumptime[newc]=jumptime[c]

# output of results

ldf=cloning/time

print(’large deviation function = ’,ldf)

meanobs=sum(obs[c] for c in range(N))/N/time

print(’weighted mean of observable = ’,meanobs)
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