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Discrete spin variables and critical temperature in deterministic models with glassy behavior
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The problem of the existence of a glassy phase transition in deterministic spin models is reconsidered,
examining an Ising model with general sgimnd nontranslationally invariant interaction. The discrete nature
of the spin variables is shown to allow the glass state.
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[. INTRODUCTION random-coupling case, the mean-field equations obtained by
resumming the high-temperature expansion do not determine
the critical temperaturg8]. Another interesting case seems
eto be the coupling matrix

The spin-glass phase transition in infinite-range system
[like Sherrington- KirckpatricKSK) model[1]] has been ex-
plained in the framework of replica theory, associating th
spin-glass phase with the breaking of symmetry for the rep-
lica solution[2]. The replica trick was introduced to treat _ 1 T, 5 5
disorder, which is a key ingredient of the problem. The pos- Jij _CN\/_NCO W(g' —ii+9i9 )
sibility of describing a glassy transition in the absence of
disorder has been reconsidered in recent years by introducinH
deterministicinfinite-range spin models with nontranslation- that corresponds to the real part of the propagdpquan-
ally invariant interaction$3-5]. The idea is that determinis- tizing hyperbolic maps of the for®]
tic (but highly and irregularly oscillatingcouplings among
the spins enable to reproduce frustation, yielding a complex
landscape for the free energy of the system: one says that
disorder is “selfinduced.” This scenario has been numeri-
cally confirmed in at least one case, thme model[5],

; g s . Here,Cy is an arbitrary phase factdCy|= 1. This time, the
through the mapping of the original deterministic system Neritical temperature of a phase transition can be determined

an appropriate random one. The Hamiltonian of this model '%y linearization around the largest eigenvalueJoind its

29 1

B= 49°—-1 29

. geN. ©)

defined by value isT;~0.8 [10]. The transition is of glassy type be-
N cause the mean magnetization is zero for small values of the
H=— 1 2 Jioio (1) Edwards-Anderson parameter. We do not know whether the
I | I - .
257, possibility of locate the transition temperature is only a
mathematical chance or if there is a deeper physical reason.
whereo;==1, i=1,... N are scalar spin variables add By the way, we observe that the dynamical system consid-
is a symmetric orthogonall X N matrix ered in the sine model is periodic and, sirdcis orthogonal,
the eigenvalues are only 1. In the second case the dynami-
2 [ 2] o cal system is chaotic and, at the thermodynamical likhit
Jij= \/msm one1) =L N (20— (or equivalently at the classical limit—0), the spec-

trum is equidistributed i —1,1].

It has been suggested by Passial. that, unlike the ran-
dom case, where the long-ranged spherical model admits a
critical temperaturg¢11], the glass transition in deterministic
spin models only exist for Ising-like variables. The numeri-
cal study of theXY case[12] (where the spin variables are
complex numbers of modulo &nd the analytical one for the
) spherical mod€]l13] (where the spin variables are allowed to

be continuos functions subject to the constra®f,o,
=N) has strenghtened this conjecture, showing that these
acting over the 2-toru7]. In this case, a glassy behavior has systems are paramagnetic at all temperatures. In this paper, it
been detected numerically and also the ground state is knows actually shown that it is the discrete nature of the spin
for particularprime values of the integeN [5]. While it has  variables in deterministic model that generate a phase tran-
been shown using the replica formalism that the system doesition associated with a nontrivial thermodynamical behav-
actually exhibit the glassy behavior of the correspondingor. We are going to generalize the dichotomic Ising case,
considering the general case of spgjrso that the number of
configurations available for each spin is21. For the sake
*Electronic address: giardina@bo.infn.it of space, we will treat only the “quadratic” couplin@}).

It has been observd@] that the matrixJ coincides with the
imaginary part of the evolution operatdt, quantizing the
elliptic dynamical system given by the unit Hamiltonian
sympletic matrix
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The calculation that will be given is essentially an adaption (3) Any diagram has to be divided by its order of symme-
of the calculation of Ref[10], part of their work has, how- try. In the thermodynamical limit, due to the properties of

ever, been simplified. guadratic Gauss sums, it can be shoisee Ref[10] for a
rigorous proof that the set of diagrams contributing in order
I. ISING MODEL OF SPIN s N are just those of even ordar=2p with p+1 vertices and

p loops. Equivalently these are all the diagrams having two
Consider a system dfil spins with only one component yertices with two links(the extremaandp—1 vertices with
(the one along the axis for exampleof values, which can  four links (all the remaining onésAt every order, Ref[10]
be an integer or a halfinteger. The possible autostates of eaghy| us that couplings gives an amounté2 P, the symme-

spin are labeled by the quantum numisgrwhich ranges try factor is 2** and we only need to calculate the cumu-
from —s to sin unit steps. The Hamiltoniatnormalized to  |antsu, andu,

the spin valugis

N N 1s+1 10
! LS o T3 s
=59 2, JisdDsdi)— 5 2 s(h(D).
1 (s+1)(2s° +25+1)
The normalization is such that the maximal interaction be- W="15 53 (12)

tween two parallel spins{(]) remains constant varying the
spin value. Ifs=1/2 we recover Eq(l). The prefactor 1/2 is Putting everything together, we can perform the summation
conventional and is kept to compare with previous resultsand obtain the Helmholtz free energy

The partition function[at site-dependent magnetic field
h(i)=0] is the trace of the Boltzmann factor

B>
2PFL 2P

—BF(B)=N Iog<2s+1)+N2l (Up)2(uy) P~
=

Z(B)=Trexp—pH)]= 2 exp[2 2 2 JisdsdD)|.

gt s(s+1)2p2

(7 =NIog(2s+ )+ & 60537 (54 1) (2524 25+ 1) 2
Using standard formulas for gaussian integrations we can =Nlog(2s+1)+NG(S). (12)
rewrite the previous expression as a theoridfelds in zero
dimension To determine the Gibbs free enerdf 8,m(i)], we have to

put a magnetic fieldn(i), repeat the previous expansion and

Z(ﬁ)Z{E} detuz(jz-ﬂ_ﬁ\])fRNdx perform the Legendre transform
Z 1 N LN ®[B,m(i)]EF[B,h(i)]+2i h(i)m(i) (13)
Xex;{—z— X I+ X s, ()x() |
Bif=1 S =

with m(i)= —dF/dh(i). The class of nonvanishing diagrams
(8) has the same weights as in tii@) =0 case but with an extra
factor of[1—m?(i,)] for each vertex, [14]. The hypothesis
The summation over ths, is now decoupled and can be of self-averaging Eq. [8], namely m?(i)=q
carried out; after some algebraic manipulations, we have =limy_..1/NZ;m?(i) yields the same functio®() in Eq.
(12), with B replaced byB(1—q). In the final expression for
1 1 PR ®[B,m(i)] we have to put by hand the usual terms given by
Z(B)= “,Z—ZJ)LNdxeX ~ 25 i21 Jij x()x(]) the entropy of a set of noninteracting spins constrained to
eti(2mp o have magnetizatiom(i) and the “naive” mean field energy

N sinH (14 (1/28)x(i)] ) .
+i§1 [ S (1725)X(1) ] ] 9 soEmin=— log sinf{ (1+ 1/2s) £ S *(m(i))]
a sin{ (1/2s)£ ;Y (m(i))]

To obtain the mean-field equations, we resum the high- 1
temperature expansion for the Gibti&., magnetization de- —m(i) L Im(i)]
pendenk free energy. We start, as usual, from the Helmholtz B
free energy— BF(B)=logZ(B), representing its expansion -5 Z Jijm(i)ym(j) —=NG[B(1—-q)],
in diagrammatic way. For the reader’s convenience, we re- g
call the fundamental steps. (14)

(1) In the diagrammatic representation we have to con-
sider all the connected diagrams with the propaggthy for ~ where
any link between two consecutives vertices.

(2) The vertices factors are now generalized for any ver- e Bleot {14 Zlvlo [ X eor [ 2
tex with mlinks to the cumulanu,, (i.e., themth coefficient s(y) 2s) ° 2s)Y 2s) %" 25)Y
of Taylor expansiohof log{sinH (1+ 1/25)x]/sinH (1/2s)x]}. (15
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is the so-called Langevin function&5], which is typical of 40
paramagnetism in nonmetallic solids. Having the expressior
for the Gibbs free energy, the mean field equations of the
model (that are presumably exact because of its infinite
range are given by direct differentiation of Eq14). These

would be the analogous of TAP equations for SK model
[16]. To see whether a “glass” phase transition exists we
look for solutions of mean-field equations different from the
trivial oneq=0. ForT nearT, the magnetizations(i) and

also the eigenvectors corresponding to the largest eigenvalu

B.

of J;; are small so we can linearize m(i). Using 10
R T— 3 . 9 s(1+2s+2s?)
s [m(i)]= g7 m() 0 (1+s® ™ (i)
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S

+o[m*(i)] (16)

FIG. 1. Plot of the inverse critical temperatuge versus the

the linearized equations read ) e HVE 10
spin values. The solid line is the curvg= 3 —3/s+1.

im(i)—ﬁm(iHZﬁG’(ﬂ)m(i). (17)  Ministic models. Its nature is “glassy(in the sense that the
s+1 pure magnetization states at zero temperature are neither fer-
romagnetic nor antiferromagnetiby the same argument of
Ref. [10]: at T=0 the averaged magnetization is zero be-
cause it is proved that

With some tedious algebra one can rewrite the previou
equation as

0=pB[(1+5)3(1+2s+25%)?]— B[ 3s(1+5)*(1+2s LN
+28%)2]+ B 1205%( 1 +5)%(1+ 25+25)] lim 5 2, #i=0

N— o

— BY[40s*(1+ )(14+ 285+ 2352
A1 ( ) )] if u; are the components of any normalized eigenvector of

+ B[360%°](1+s)— 1080G’. (18  the matrixJ corresponding to the eigenvalue 1. Even though
the ground state is degenerate, none of the magnetization
The critical temperatur& is given by the zeros of Eq18).  states generates long-range order. One would ask if the dis-
For fixed value ofs we numerically solved it; in Fig. 1 we creteness of spin variable is a necessary condition to a glass
plot the critical inverse temperatug versus the spin value  state exist. To obtain this conclusion one would have to show
s. The numerical fit is consistent with the following law:  that there is no transition in models with continuous symme-
try (like the XY or Heisenberg modelsThis point goes be-
~ E)_ i yond the aims of this paper and will be discussed elsewhere.
Be 3 s+1° (19
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