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Abstract
We perform a statistical analysis of deterministic energy-decreasing algorithms
on mean-field spin models with a complex energy landscape, such as the Sine
model and the Sherrington–Kirkpatrick model. We specifically address the
following question: in the search for low-energy configurations, which is more
favorable (and in which sense)—a quick decrease along the gradient (greedy
dynamics) or a slow decrease close to the level curves (reluctant dynamics)?
Average time and wideness of the attraction basins are introduced for each
algorithm, together with an interpolation among the two, and experimental
results are presented for different system sizes. We found that while the
reluctant algorithm performs better for a fixed number of trials, the two
algorithms become basically equivalent for a given elapsed time due to the fact
that the greedy algorithm has a shorter relaxation time which scales linearly
with the system size compared to a quadratic dependence for the reluctant
algorithm.

PACS numbers: 02.60.Pn, 05.10.Ln, 05.50.+q, 75.10.Nr

1. Introduction

The problem of finding the ground state of a frustrated spin model with a complex energy
landscape is, in general, an NP-complete problem: the running time of exact algorithms
increases at least exponentially with system size. There are, however, several new ground-
state techniques devised for specific examples which are able to calculate exact ground state
in a polynomial time using elementary algorithms in combinatorial optimization, in particular
network flows [1, 2]. This opened the route to the numerical study of very large system
sizes for different problems, such as spin glasses [3], the random field Ising model [4], the
solid-on-solid model with a disordered substrate [5], superconducting flux line lattices [6] and
many others. In the general case, where such particular algorithms are not known, one is
forced to use approximated methods. These consist of some kind of dynamic in the space of
spin configurations which explores different states looking for the lowest energy value. The
simplest choice is to consider some kind of Monte Carlo simulation at zero temperature

0305-4470/03/102413+09$30.00 © 2003 IOP Publishing Ltd Printed in the UK 2413

http://stacks.iop.org/ja/36/2413


2414 L Bussolari et al

(deep quench) which, starting from a random configuration, follows a random walk of
decreasing energy until one ends up on a local energy minimum. One then repeats this
procedure many times and takes as a better estimate of ground state the lowest energy found.
Many variants and improvementshave been proposed and among them the simulated annealing
[7], which slowly cools the system from high temperature to zero temperature and parallel
tempering, which uses several temperatures in parallel [8, 9]. Which algorithm is most suitable
depends on the nature of the problem; for a recent paper, where the performances of these
different Monte Carlo simulation techniques are compared, see [10].

Monte Carlo dynamics, of one type or another, is stochastic, i.e. for a given (random)
initial configuration the trajectory is a random process. On the other hand, to find low-
temperature states, one may also consider deterministic dynamics, which uniquely associates
with a (random) initial spin configuration a final state according to some evolution rule.

A simple question which naturally arises is the following: what kind of deterministic
dynamic is most effective in finding the configurations of the smallest energies? While
stochastic dynamics has been widely studied in the literature, much less is known on statistical
properties of deterministic dynamics.

In this paper, we focus our attention on two of them: greedy and reluctant: both of them
follow a 1-spin-flip decreasing energy trajectory, the difference being that while in greedy
dynamics the energy decreases by the largest possible amount, the reluctant algorithm makes
moves corresponding to the smallest possible energy decrease. Some of the properties of these
two minimization algorithms were studied in [11]. In this paper we push the analysis further
addressing the following questions:

• For a given number of initial spin configurations which of the two dynamics is more
efficient? Which one has the largest basin of attraction?

• For a given elapsed time which one is able to reach the lowest energy states?

In order to answer these questions we considered two different models. For the Sine model
(section 3), where an analytical knowledge of the ground state for particular values of system
sizes is available, we focus our attention on the capability of the two algorithms in detecting this
ground state. For the Sherrington–Kirkpatrick model we present numerical results in section 4,
where the lowest energy found is studied with different parameters in the simulations. The
outcome of the analysis is that while for a fixed number of initial spin configurations the
reluctant dynamics works better as was found in [11] (there is a higher probability of finding
low-energy configurations), when the elapsed running time is fixed the two algorithms give
basically the same results (the time used for a single run increases linearly for the greedy
algorithm and quadratically for the reluctant). A final test is also performed in a stochastic
convex combination of the two algorithms: at each step the motion is greedy with probability
P and reluctant with probability 1 − P . It is found that for large N and for fixed running times
a substantial improvement is obtained with a P = 0.1.

2. Greedy and reluctant dynamics

We consider models defined by the Hamiltonian

H(J, σ) = −1

2

N∑
i,j=1

Jijσiσj (1)

where σi = ±1 for i = 1, . . . , N are Ising spin variables and Jij is an N × N symmetric
matrix which specifies interaction between them.
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The greedy and reluctant dynamics work as follows. The initial spin configuration at time
t = 0 is chosen at random with uniform probability. Then the evolution rule is:

1. Let σ(t) = (σ1(t), σ2(t), . . . , σN(t)) be the spin configuration at time t.
2. Calculate the spectrum of energy change obtained by flipping the spin in position i, for

i = 1, . . . , N :

�Ei = σi(t)
∑
j �=i

Jijσj (t). (2)

3. Select the site i� associated with the lowest (resp. highest) of the negative energy change
for the greedy (resp. reluctant) dynamics,

i�greed =
{
i ∈ {1, . . . , N} : �Ei� = min

i∈{1,...,N}
{�Ei < 0}

}
(3)

i�reluc =
{
i ∈ {1, . . . , N} : �Ei� = max

i∈{1,...,N}
{�Ei < 0}

}
. (4)

4. Flip the spin on site i�:

σi(t + 1) =
{−σi(t) if i = i�

σi(t) if i �= i�.
(5)

Both the dynamics follow an energy descent trajectory till they arrive at a 1-spin-flip stable
configuration, i.e. a configuration whose energy cannot be decreased by a single spin-flip.
These represent local minima in energy landscape at zero temperature with respect to a 1-spin-
flip dynamic. They are also the solutions of the mean-field TAP equations at zero temperature
[18]:

σi = sign


∑

j �=i

Jijσj


 . (6)

3. Results for the Sine model

The first model we study is a mean-field system, having a very high degree of frustration
even though the bonds between spins are non-random. It was introduced by Marinari et al in
[12, 13]. The couplings are given by the orthogonal matrix associated with the discrete Fourier
transform

Jij = 2√
2N + 1

sin

(
2πij

2N + 1

)
. (7)

The ground state of the model is not known for general values of the system size. However, as
already noted in [12, 13], for special values of N the ground state can be explicitly constructed
using number theory. Indeed, for odd N such that p = 2N + 1 is prime of the form 4m + 3,
where m is an integer, let σL be the state given by the sequence of Legendre symbols, i.e.

σL
i =

(
i

p

)
=

{
+1 if i = k2(mod p)

−1 if i �= k2(mod p)
(8)

with k = 1, 2, . . . , p − 1. Then, it is easy to verify (see [14]) that

H(σL) = −N

2
(9)
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which is, of course, the lowest value that energy can take due to the orthogonality of the
interaction matrix.

The explicit knowledge of ground state for selected N is a valuable bonus, since it allows
complete control of dynamical and statistical properties of the algorithms for quite large system
sizes. In this section we restrict our analysis to such N values for which we have an exact
expression of ground-state configuration as Legendre symbols. The natural unit of time is the
‘spin-flip’ time, i.e. the cycle during which the dynamic explores all the internal fields in such
a way to decide which spin to flip. In this unit, the time t of a realization of the dynamic for a
given initial condition is obtained by counting the number of ‘spin flips’ necessary to reach a
metastable configuration.

We run greedy and reluctant dynamics for a large number M of initial conditions, keeping
track of the number of times nGS we found the ground state as the final configuration. We
also measured the time of each realization ti, i = 1, . . . ,M . The number of trials M is an
increasing function of the system size. For small sizes we stopped when we found the ground
state 10 000 times. For the largest size (N = 69) we used up to 109 initial configurations,
so that the ground state had been found at least 100 times. We computed the following three
quantities:

1. the average relaxation time of the dynamic

τ = 1

M

M∑
i=1

ti (10)

2. the estimated probability to find the ground state

pGS = nGS

M
(11)

3. the average time to find the ground state

TGS = 1

nGS

M∑
i=1

ti (12)

which are obviously related by TGS = τ/pGS .

In figure 1 we plot the average time of the dynamic to reach a metastable configuration. As
one could expect the greedy dynamic is much faster, since it follows the most rapid path to
decrease energy. The greedy average time is linear with the system size, while the reluctant
dynamic has a characteristic time which increases as Nα with α ∼ 1.90.

In figure 2 we compare the probabilities of finding the ground state for the two algorithms.
These have been estimated empirically using formula (11). We always used a number of trials
M large enough to ensure the robustness of the statistical properties, i.e. we increased M until
the estimated probabilities relaxed to an asymptotic value with negligible fluctuations. We
can see that, apart from finite-size effects for very small system sizes, both algorithms have an
exponentially decreasing probability of finding the ground state. Nevertheless, the reluctant
probability is a little bit larger which shows that, for a given number of initial conditions, the
reluctant algorithm is more efficient in finding the ground state, i.e. it has a larger basin of
attraction. This result agrees with the one in [11], which using both algorithms with the same
number of initial conditions, obtained a better estimate of asymptotic value of energy ground
state for the SK model in the case of reluctant dynamics.

On the other hand, if one measures the average time to find a ground state, equation (12),
which takes into account both the average time of dynamic and the probability of finding the
ground state, one can see from figure 3 that the greedy algorithm requires a smaller time on
average. This means that, from a practical point of view, for a given elapsed time greedy
dynamic is slightly more efficient.
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Figure 1. The average time to reach a metastable configuration for greedy (circle) and reluctant
(squares) dynamics for the Sine model. The inset shows the data in log–log scale. The continuous
lines are the numerical fits: τgre(N) ∼ 0.25N and τrel(N) ∼ 0.10N1.90.

0 20 40 60 80

N

10
–6

10
–5

10
–4

10
–3

10
–2

10
–1

100

p G
S

Figure 2. Probability of finding the ground state for greedy (circle) and reluctant (squares)
dynamics for the Sine model.

4. Results for the Sherrington–Kirkpatrick model

The Sherrington–Kirkpatrick model is the infinite range case for spin glasses [15]. The
couplings Jij are independent, identically distributed symmetric gaussian random variables
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Figure 3. Average time to find the ground state for greedy (circle) and reluctant (squares) dynamics
for the Sine model. The straight lines are fits to exponential law TGS ∼ e0.20N .

(Jij = Jji , Jii = 0) with zero mean and variance 1/N . Since this is a disordered model one
is interested in the quenched average ground-state energy. For each N this is defined as

eGS
N = Av

(
1

N
infσHN(J, σ )

)
(13)

where we denote by Av( ) the average over the couplings. Analytical knowledge of this quantity
is available in the thermodynamical limit N → ∞ using Parisi Ansatz for replica symmetry
breaking theory: eGS

∞ = −0.7633 [16], while numerical simulations obtained using finite-size
scaling eGS

∞ = −0.76 ± 0.01 [17], eGS
∞ = −0.755 ± 0.010 [18], eGS

∞ = −0.775 ± 0.010 [19].
The statistical analysis on the Sine model revealed that, for a given number of initial

conditions, reluctant dynamic works better than greedy to find the lower states in the energy
landscape. On the other hand, since the reluctant path is much longer than the greedy, from
a practical point of view, for a given elapsed time, it is slightly more efficient to make many
quick greedy trials than a few slow reluctant runs. For the SK model it is not possible to
perform the same analysis, because complete control of the ground state is lacking and also
it fluctuates from sample to sample. To check the conclusion of the previous section we thus
performed a series of numerical experiments varying control parameters.

Moreover, we investigate the efficiency of a stochastic convex combination of the two
algorithms: with probability 0 � P � 1 we perform a greedy move and with probability
1 − P the corresponding reluctant move. The deterministic dynamics are obtained at P = 1
(greedy) and P = 0 (reluctant) respectively. Intermediate values of P are stochastic dynamics
where the greedy and reluctant moves are weighted by the probability P. First of all we probed
the average time of the dynamic for different values of P using formula (10), which is easily
accessible to measurements and has good self-averaging properties. Results are shown in
figure 4, together with the best numerical fits. Note the progressive increase of the slope in
log–log scale from an almost linear law for greedy (bottom) τ{P=1}(N) ∼ N1.04 to an almost
quadratic law for reluctant (top) τ{P=0}(N) ∼ N2.07. However, an interesting result is that
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Figure 4. The average time to reach a metastable configuration for the SK model for different
values of P. Top to bottom: P = 0 (reluctant), P = 0.1, P = 0.5, P = 0.9, P = 1 (greedy).
The continuous lines are the numerical fits to power law: τ (N) ∼ Nα , with α = 2.07, 1.26,

1.08, 1.05, 1.04 from top to bottom.

for P = 0.1 we still have τ{P=0.1}(N) ∼ N1.26, i.e. a stochastic algorithm, which makes on
average one greedy move (and nine reluctant moves) out of ten, has a much smaller average
time than the deterministic reluctant algorithm P = 0. We note that the exponents for the
greedy (resp. reluctant) algorithm are very close to the integers 1 (resp. 2) with an observed
slow crossover between the two for intermediate p. It would be interesting to have a theoretical
understanding of this phenomenon even if only at a heuristic level. We plan to return to this
problem in a future work.

Next we measured the lowest energy value found for a given number of initial conditions
for different probability P. One has to choose a protocol to fix the number of initial conditions.
Obviously, the larger the system size the bigger the number of trials must be. We tried different
choices obtaining similar results. For the sake of space we show in figure 5 the results of the
run where we choose N initial conditions for a system of size N. The data have been averaged
on 1000 disorder realizations. We see that the smaller the probability of making greedy moves,
the lower the energy found. The best results are obtained for P = 0, which corresponds to
deterministic reluctant dynamics. This confirms that, ignoring the total amount of time and
imposing constraint only on the number of initial conditions, reluctant dynamics is the most
efficient in reaching low-energy states.

Finally, we compared results of different probabilities in the case one considers a fixed
elapsed time. As an example, we present results for an elapsed time of 100 h of CPU on
a CRAY SP3 for N in the range [50, 300]. We considered 1000 disorder realizations again
and assigned the same time length to each sample (6 min). Obviously, in this way the
reluctant dynamic starts from a smaller number of initial conditions than the greedy, because
its relaxation time is longer. In figure 6 we plot the values of the lowest energy state as a
function of N. We can see from the data that, for a fixed elapsed time, greedy dynamic (P = 1)

finds lower energy states than reluctant (P = 0). Moreover, we observe that the best result
is obtained for P = 0.1. Thus we suggest that the more powerful strategy to find low-energy
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Figure 5. Lowest energy value using a protocol of choosing N initial condition for the SK model
for different values of P. Bottom to top: P = 0 (reluctant), P = 0.1, P = 0.5, P = 0.9, P = 1
(greedy).
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Figure 6. Lowest energy value for a fixed elapsed time of 100 h on a CRAY SP3 for the SK model
for different values of P (see the legend).

state using greedy and reluctant dynamics is a combination of them, where for most of the
steps the move is reluctant and for a small fraction of steps (say 0.1) the move is greedy.
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