
INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 2983–2994 PII: S0305-4470(03)40138-8

Energy landscape statistics of the random orthogonal
model

M Degli Esposti, C Giardinà and S Graffi
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Abstract
The random orthogonal model (ROM) of Marinari–Parisi–Ritort [13, 14] is a
model of statistical mechanics where the couplings among the spins are defined
by a matrix chosen randomly within the orthogonal ensemble. It reproduces the
most relevant properties of the Parisi solution of the Sherrington–Kirkpatrick
model. Here we compute the energy distribution, and work out an estimate
for the two-point correlation function. Moreover, we show an exponential
increase with the system size of the number of metastable states also for non-
zero magnetic field.

PACS numbers: 05.50.+q, 75.10.Nr

1. Introduction: review of the model and outlook

Random (symmetric) matrices out of a given ensemble can be taken as interaction matrices
for Ising spin models. The most famous example is the Sherrington–Kirkpatrick (SK) model
of spin glasses, where the elements are i.i.d. Gaussian variables with properly normalized
variance. The aim of this paper is to discuss a very specific example of these spin glass
models, which also share some interesting connections with number theory, and show how
random matrix theory could be useful to investigate its properties.

For the sake of simplicity, let us start with a very concrete question: let N � 1 be a
positive integer and denote �N the space of all possible configurations of N spin variables

�N = {σ = (σ1, . . . , σN), σj = ±1} |�N | = 2N.

Given k = 1, . . . , N − 1, denote Ck the correlation function:

Ck(σ) =
N∑

j=1

σjσj+k where j + k := (j + k − 1 mod N) + 1
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and define the Hamiltonian function

H(σ) = 1

N − 1

N−1∑
k=1

C2
k .

For each N the ground state of the Hamiltonian H can be looked at as the binary sequence with
lowest autocorrelation and finding it has some relevant practical applications in the theory of
efficient communication (see [4] and references in [13]).

It is remarkable that no concrete procedure for reproducing the ground state for generic
N is known, but ad hoc constructions based on number theory exist for very specific values
of N: if N is a prime number with N = 3 mod 4, then the sequence of the Legendre symbols1

(σN = 1)

σj :=
(

j

N

)
= j

1
2 (N−1) mod N j = 1, . . . , N − 1

gives the ground state of the system [9, 13].
Through the use of the discrete Fourier transform, it is not difficult to see [13, 16] that the

previous problem is in fact equivalent to finding the ground state for the so-called sine model,
which represents our starting point:

H(σ) = −1

2

N∑
i,j=1

Jijσiσj .

Here J is the following N ×N real symmetric orthogonal matrix with almost full connectivity:

Jij = 2√
1 + 2N

sin

(
2πij

2N + 1

)
i, j = 1, . . . , N.

Here again, if 2N + 1 is prime and N odd, the Legendre symbols σj = jN mod 2N + 1
give the ground state of the system for these very specific values of N.

A natural approach is to extend the study of the ground state to the more general
thermodynamic behaviour of the model in terms of the inverse temperature β = 1

T
. As

usual, the two basic objects are the partition function

ZJ (β) :=
∑

σ∈�N

e−βH(σ )

and the free energy density (at the thermodynamic limit)

fJ (β) = lim
N→∞

− 1

βN
log ZJ (β).

It is important to remark now that even if there is no randomness in the system, the ground
state of the model looks like an output of a random number generator and the numerics of its
thermodynamic properties resembles those of disordered systems. This observation was in
fact the starting point of an approach developed in [13, 14, 16] where this model is seen as
a particular realization of a disordered model where the coupling matrix is chosen at random
from a suitable set of matrices.

Definition 1. The random orthogonal model (ROM) with magnetic field h � 0 is the disordered
system with energy

HJ (σ) = −1

2

∑
ij

Jijσjσi + h
∑

j

σj (1)

1 (
j
N

) = 1, if j = x2 mod N and −1 otherwise.
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where the coupling matrix J is chosen randomly in the set of orthogonal symmetric matrices2:

J = ODO−1.

Here O is a generic orthogonal matrix and D is diagonal with entries ±1. The numbers ±1
are the eigenvalues of J .

The natural probability measure µ on this set is the product of the canonical Haar measure
on the orthogonal group by the discrete measure on the diagonal terms.

We will use the notation 〈·〉 to denote the average with respect to the measure µ. In particular,
we are interested in the quenched (i.e., the average is performed after taking the logarithm)
free energy density:

〈fJ (β)〉 = − lim
N→∞

1

βN
〈log ZJ (β)〉. (2)

The average over the ROM disorder is performed by the following fundamental formula,
which has been obtained by adapting the results in [12] (see also [2]) valid for the unitary case
to the orthogonal one [14]. For any N × N symmetric matrix A:〈

exp

{
Tr

(
JA

2

)}〉
= exp

{
N Tr

(
G

(
A

N

))}
+ RN(A)

∼= exp


N

N∑
j=1

G(λj)


 (3)

where RN → 0 in the thermodynamic limit N → ∞, the λj are the (real) eigenvalues of 1
N

A

and G(x) is given by

G(x) = 1

4

[√
1 + 4x2 − ln

(
1 +

√
1 + 4x2

2

)
− 1

]
.

The same formula is exact for the SK model, i.e Gaussian independent symmetric
couplings, with

GSK(x) = x2

4
.

Note that G(x) = GSK(x) + o(x). For example, up to the tenth order

G(x) = x2

4
− x4

8
+

x6

6
− 5x8

16
+

7x10

10
+ O(x11).

The ROM model has been chosen in such a way that,at least for not too small temperatures,
the deterministic sine model and the one with quenched disorder share a common behaviour.
More precisely, the couplings are always of order N− 1

2 ; the diagrams contributing to the
thermodynamic limit of the high-temperature expansion for the free energy density have
the same topology and they can all be expressed in terms of positive powers of the trace of
the couplings. By construction, the high-temperature expansion of the free energy density
fJ (β) in powers of β is then independent of the particular choice of the symmetric orthogonal

2 In the ROM model generic matrices have non-zero diagonal elements. Often these terms will be set to zero and
orthogonality will be reconstructed in the large-N limit.
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matrix J and it does coincide with the annealed average with respect to µ. In particular [16]:

−β〈fJ (β)〉 = log 2 + G(β).

Besides SK and in general the large class of p-spin models, whose couplings have a
Gaussian distribution, the ROM model provides another interesting class of disordered mean-
field spin glasses. This model has received considerable interest in recent years, especially
in the context of the structural glass transition. Indeed it can be seen as the random version
of a wide class of models (for example, the fully frustrated Ising model on a hypercube or
the above-mentioned sine model) which despite having a non-random Hamiltonian display
a strong glassy behaviour [3, 9, 13]. This model has been studied in the framework of
replica theory [14], where it was shown that replica symmetry is broken and there are many
equilibrium states available to the system. Mean-field (TAP) equations have been derived for
this model by resumming the high-temperature expansion and the average number of solutions
of these equations has been studied in [16].

It is a well-established fact that the observed properties of mean-field spin glass models
are due to the large number of metastable states the system possesses. Despite the lack of
full mathematical justification, the Parisi scheme of replica symmetry breaking yields a clear
picture of equilibrium statistical properties: states with similar macroscopic behaviour have
vastly different spin configurations, and the relaxation times for transition between them are
large. As a consequence, the ground state is accessible only on very long time scales. It is
worth mentioning that rigorous results validating the Parisi solution have been accumulating
in recent times.

For example, Guerra and Toninelli [10] have proved the existence of the thermodynamic
limit, i.e. the existence of the limit for quenched average of the free energy (equation (2)).
See also [6] where the result has been extended to general correlated Gaussian random energy
models. Finally, more recently [11], Guerra showed that the Parisi ansatz represents at least a
lower bound for the quenched average of the free energy.

However there is not yet an unambiguous way to identify those metastable states which are
relevant for thermodynamics in the infinite volume limit. At zero temperature, the metastable
states can be defined as the states locally stable to single spin flips (definition recalled in
section 3 below) and the calculations are relatively straightforward. Complete analysis of the
typical energy of metastable states and the effects of the external field have been undertaken
both for the SK model [7, 18, 19] and for general p-spin model [15]. The zero-temperature
dynamics for the deterministic sine model has been instead studied in [9].

At non-zero temperature the identification is less obvious and most studies [5, 17] rely on
the counting of the number of solutions to the TAP equations [20]. According to the general
belief, one can associate with each metastable state a solution of the TAP equation, but the
inverse is not true: a TAP solution corresponds to a metastable state only if it is separated
from other solutions by a barrier of height diverging with the volume.

It appears, however, that the calculations in the presence of an external field have not yet
been carried out even at zero temperature. One expects, in analogy with the SK model, the
existence of an AT line [1] indicating the onset of replica symmetry breaking. In this paper,
we study at length the effects of the magnetic field on the structure of local optima of the
energy landscape. We are able to use these results to shed further light on the nature of the AT
instability at zero temperature.

In section 2, we study the statistics of energy levels over the whole configuration space.
We compute the energy distribution of a generic spin configuration and the pair correlations for
a given couple of spin configurations with a fixed overlap. In section 3, we analyse metastable
states at zero temperature, also in the presence of an external field.
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2. Statistics of energy levels

We start by analysing the statistical features of the landscape generated by the energy function
(1). In this section, we will always consider zero magnetic field h = 0. Let us begin with the
energy distribution for a single fixed configuration.

2.1. Distribution of energy

Let σ = (σ1, σ2, . . . , σN ) denote a given configuration with energy HJ (σ). The probability
Pσ (E) is then given by

Pσ (E) := 〈δ(E − H(J, σ))〉.
By gauge invariance, the probability Pσ (E) does not depend on the spin configuration σ and
will be denoted by just P(E). In fact: H(J, σ) = H(J ′, σ ′) and P(J ) = P(J ′) where
J ′

ij = Jijσiσ
′
i σj σ

′
j .

Introducing the integral representation for the δ function

δ(x − x0) = 1

2π i

∫ +i∞

−i∞
dk ek(x−x0)

we get

P(E) = 1

2π i

∫ +i∞

−i∞
dk ekE

〈
e

1
2

∑N
i,j=1 kJij σiσj

〉
and we can apply formula (3) to average over disorder considering the matrix Aij = kσiσj .

It is easy to prove that A admits only one non-zero, simple eigenvalue λ = kN , so that

P(E) = 1

2π i

∫ +i∞

−i∞
dk exp

[
N

(
kE

N
+ G(k)

)]
.

In the large-N limit the integral can be evaluated using the saddle-point method. Clearly, the
equation

E

N
+ G′(k) = E

N
+

k

1 +
√

1 + 4k2
= 0

admits the solution k̄ = 2EN
4E2−N 2 .

This gives

PROM(E) = CN exp

[
N

(
k̄E

N
+ G(k̄)

)]
(4)

= CN

(
1 −

(
2E

N

)2
)N/4

∼ CN exp

[
−E2

N
− 2

E4

N3
− 16

3

E6

N5
+ · · ·

]
(5)

where the normalization constant CN is given by (� denotes the Euler gamma function)

CN = N
√

π�
(
1 + N

4

)
2�
(

6+N
4

) .

As a comparison, in the case of the SK model one finds exactly the Gaussian distribution:

PSK(E) ∼ exp

(
−E2

N

)
.
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Figure 1. Probability distribution function PROM(E) for the ROM model (full curve). Simulation
for a N = 100 ROM (data points). For a fixed spin configuration, 106 realizations of disorder were
generated.

To check the validity of formula (3) which has been used to average over disorder,
we computed PROM(E) for a relative small ROM (N = 100) numerically. For a given
spin configuration, random disorder realizations J = ODO−1 were generated by using
an orthogonal matrix O obtained from a Gaussian matrix through the Gram–Schmidt
orthogonalization algorithm and coin tossing for the diagonal D. The resulting distribution of
energies was binned and is shown as the data points in figure 1.

As it should be, the support of PROM(E) is almost fully contained in the interval
[−N/2, N/2]. Indeed, the orthogonality of J imposes simple bounds on the energy of
any spin configuration: the lower bound −N/2 (resp. upper bound N/2) is reached if and only
if σ is an eigenvector of J corresponding to the eigenvalue +1 (resp. −1).

2.2. Two-point energy correlation

We consider now the probability Pσ,τ (E1, E2) that two configurationsσ, τ ∈ �N have energies
E1 and E2, respectively. Gauge invariance implies that this probability can only depend on
the overlap between the two configurations:

q(σ, τ ) = 1

N

N∑
i=1

σiτi.

Proceeding as above, we get

Pσ,τ (E1, E2) = 〈δ(E1 − H(J, σ))δ(E2 − H(J, τ))〉
= 1

(2π i)2

∫ +i∞

−i∞
dk1

∫ +i∞

−i∞
dk2 exp(k1E1 + k2E2)

×
〈

exp

(
1

2

N∑
i,j=1

Jij (k1σiσj + k2τiτj )

)〉
. (6)
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Consider now the matrix Aij = k1σiσj + k2τiτj which has two non-zero simple eigenvalues

λ± = N

2

[
(k1 + k2) ±

√
(k1 − k2)2 + 4k1k2q2

]
.

Applying formula (3) we obtain

Pσ,τ (E1, E2) = 1

(2π i)2

∫ +i∞

−i∞
dk1

∫ +i∞

−i∞
dk2

× exp

[
N

(
k1E1

N
+

k2E2

N
+ G(λ+/N) + G(λ−/N)

)]
.

The saddle-point method yields the equations

Ej

N
+

1

N
G′
(

λ+

N

)
∂λ+

∂kj

+
1

N
G′
(

λ−
N

)
∂λ−
∂kj

= 0 j = 1, 2.

For the SK model, one immediately finds
E1

N
+

1

2
(k1 + k2q

2) = 0
E2

N
+

1

2
(k2 + k1q

2) = 0

with solutions

k1 = 2(E1 − E2q
2)

N(−1 + q4)
k2 = 2(E2 − E1q

2)

N(−1 + q4)
.

This yields the well-known formula [8] (σ, τ ∈ �N fixed, with overlap q):

PSK(E1, E2) =
(√

1 − q4

Nπ

)
exp

[
− (E1 + E2)

2

2N(1 + q2)

]
exp

[
− (E1 − E2)

2

2N(1 − q2)

]

= PSK

(
E1 + E2√
2(1 + q2)

)
PSK

(
E1 − E2√
2(1 − q2)

)
. (7)

For asymptotically uncorrelated configurations, q = 0, one clearly gets a product measure,
whereas one recovers complete degeneracy when q = 1:

PSK(E1, E2) = PSK(E1)PSK(E2) q = 0 (8)

and

PSK(E1, E2) = PSK(E1)δ(E2 − E1) q = 1. (9)

In general, one has∫ +∞

−∞

∫ +∞

−∞
E1E2 dPSK (E1, E2) = Nq2

2
.

For the ROM model, it can immediately be seen that the analogue of (8) and (9) holds true
with the single energy distribution PROM(E) given by (4). For a generic value of 0 < q < 1, a
first crude estimate is achieved by using the stationary points of the Gaussian approximation
and G(x) = x2

4 − x4

8 to evaluate the exponent. This yields

PROM(E1, E2) ∼ PSK (E1, E2) exp[−
q(E1, E2)]

where


q(E1, E2) := −2
−8E3

1E2q
4 − 8E1E

3
2q

4 + E4
1(1 + 2q2 − q4)

N3(−1 + q2)
2
(1 + q2)

4

+
E4

2(1 + 2q2 − q4) + 2E2
1E

2
2q

2(2 − q2 + 4q4 + q6)

N3(−1 + q2)
2
(1 + q2)

4 .

Further corrections can now be calculated, but we do not know a systematic way of doing
it at all orders.
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3. Zero-temperature metastable states

Metastable states at zero temperature are defined as the configurations whose energies cannot
be decreased by reversing any of the spins [9]. Since the energy change �Ei involved in
flipping the spin at site i is given by

�Ei = 2


∑

j

Jijσiσj + hσi




the constraint a configuration σ must satisfy in order to be metastable is∑
j

Jijσiσj + hσi > 0 ∀i = 1, . . . , N.

The average number of metastable configurations 〈N (e, h)〉 with a given energy density
e = E/N is then

〈N (e, h)〉 =
〈∑

{σ }

N∏
i=1

[∫ ∞

0
dλi δ

(
λi −

∑
j

Jijσiσj − hσi

)]

× δ

(
Ne +

1

2

∑
i,j

Jijσiσj + h
∑

i

σi

)〉
. (10)

One should really calculate the average value of the logarithm of the number of metastable
states, and hence introduce replicas because this is an extensive quantity; indeed, as pointed
out in [5], the introduction of a uniform magnetic field should induce strong correlations
among the metastable states. However, we shall proceed to a direct calculation of 〈N (e, h)〉
as it suffices to bring out the most relevant features of the problem.

Introducing integral representations for the δ functions we have

〈N (e, h)〉 =
∑
{σ }

∫ +i∞

−i∞

dz

2π i
ezNe ezh

∑
i σi

×
N∏

i=1

[∫ ∞

0
dλi

∫ +i∞

−i∞

dki

2π i

]
e
∑

i ki (hσi−λi)
〈
e
∑

i,j Jij (
z
2 σiσj +kiσiσj )

〉
.

To apply formula (3) for averaging over disorder we define the matrix Aij = (
z
2 + ki

)
σiσj +(

z
2 + kj

)
σjσi . The non-zero eigenvalues of Aij are easily calculated and read

µ± =
∑

i

( z

2
+ ki

)
±
√

N
∑

i

( z

2
+ ki

)2

so that we obtain

〈N (e, h)〉 =
∑
{σ }

∫ +i∞

−i∞

dz

2π i
ezNe ezh

∑
i σi

N∏
i=1

[∫ ∞

0
dλi

∫ +i∞

−i∞

dki

2π i

]
e
∑

i ki (hσi−λi )

× exp

{
N

[
G

(
1

N

∑
i

( z

2
+ ki

)
+

√
1

N

∑
i

( z

2
+ ki

)2
)

+ G

(
1

N

∑
i

( z

2
+ ki

)
−
√

1

N

∑
i

( z

2
+ ki

)2
)]}

. (11)
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We now perform the trace over spin configurations. Define

v = 1

N

∑
i

( z

2
+ ki

)
w = 1

N

∑
i

( z

2
+ ki

)2

and impose the constraints via two Lagrange multipliers. We have

〈N (e, h)〉 = 1

(2π i)3

∫ +i∞

−i∞
dz

∫ +i∞

−i∞
dv

∫ +i∞

−i∞
dw

∫ +i∞

−i∞
dx

∫ +i∞

−i∞
dy

× exp

{
N

[
ze +

zx

2
+

yz2

4

]}
× exp{N[−xv − yw + G(v +

√
w) + G(v − √

w)]}

×
N∏

i=1

[∫ ∞

0
dλi

∫ +i∞

−i∞

dki

π i
eyk2

i +ki (x−λi+yz) cosh(h(z + ki))

]
. (12)

The integrals over the ki are now Gaussian

〈N (e, h)〉 = 1

(2π i)3

∫ +i∞

−i∞
dz

∫ +i∞

−i∞
dv

∫ +i∞

−i∞
dw

∫ +i∞

−i∞
dx

∫ +i∞

−i∞
dy

× exp

{
N

[
ze +

zx

2
+

yz2

4

]}
× exp{N[−xv − yw + G(v +

√
w) + G(v − √

w)]}

×
N∏

i=1

[∫ ∞

0
dλi

1

2
√

πy

(
ehz e− (x+yz−λi +h)2

4y + e−hz e− (x+yz−λi −h)2

4y

)]
(13)

and the integrals over the λi can be performed in terms of the complementary error function

erfc(x) = 2√
π

∫ ∞

x

e−t2
dt

so that we find

〈N (e, h)〉 = 1

(2π i)3

∫ +i∞

−i∞
dz

∫ +i∞

−i∞
dv

∫ +i∞

−i∞
dw

∫ +i∞

−i∞
dx

∫ +i∞

−i∞
dy

× exp

{
N

[
ze +

zx

2
+

yz2

4

]}

× exp

{
N

[
−xv − yw + G(v +

√
w) + G(v − √

w)

+ ln

(
1

2

(
ehz erfc

(
−x + yz + h

2
√

y

)
+ e−hz erfc

(
−x + yz − h

2
√

y

)))]}
. (14)

As usual the calculation is concluded by carrying out a saddle-point integration. The rhs of
equation (14) is to be extremized (in the complex plane) with respect to the five variables
z, v,w, x, y.

3.1. Total number of metastable states

Here we study the total number of metastable states 〈N (h)〉 (irrespective of the energy) as a
function of the field. Writing

log〈N (h)〉 = A(h)N + BN(h) (15)
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Figure 2. ASK(h).

where3

BN(h)

N
→N→∞ 0.

A(h), in the thermodynamic limit (N → ∞), can be calculated by setting z = 0 in
equation (14), which becomes

〈N (h)〉 = 1

(2π i)2

∫ +i∞

−i∞
dv

∫ +i∞

−i∞
dw

∫ +i∞

−i∞
dx

∫ +i∞

−i∞
dy

× exp

{
N

[
−xv − yw + G(v +

√
w) + G(v − √

w)

+ ln

(
1

2

(
erfc

(
−x + h

2
√

y

)
+ erfc

(
−x − h

2
√

y

)))]}
. (16)

In the case of the SK model one recovers the well-known one-variable saddle-point
equation [7]:

x = exp[−x2/2] cosh(hx)∫∞
−x

exp[−t2/2] cosh(ht) dt
.

If xc is the solution to the previous equation:

ASK(h) = log(2) − 1

2

(
x2

c + h2
)

+ log

(
1

(2π)1/2

∫ ∞

−xc

exp[−t2/2] cosh(ht) dt

)

in particular ASK(0) ∼ 0.199, whereas for large h one has x ∼ ( 2
π

)1/2
e−h2/2 and consequently

ASK ∼ 1
π

e−h2
(see figure 2).

We now turn to the ROM model. We first perform a numerical investigation by doing
an exhaustive enumeration of spin configurations and keeping track of metastable states. The
system-size dependence of log〈N (h)〉 is plotted for different values of h in figure 3 (left).
The data are fitted to formula (15), ignoring possible finite size corrections. The resulting
AROM(h) are shown in figure 3 (right) as data points. Moreover, the saddle-point equations
corresponding to (16) were solved numerically, and the result is shown as the solid curve in
figure 3 (right). The agreement between theory and simulations is very good in spite of the
fact that we used admittedly small systems (N < 30).

As one would expect, metastable states disappear as the magnetic field is increased, since
it introduces a tendency towards ferromagnetic behaviour. Most of the processes are the
confluence of a metastable state to another with a larger drop of free energy.
3 The relatively small values of N used are not sufficient to characterize more precisely the corrections to the linear
term (see figure 3, left). We plan to do this in a future paper.
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Figure 3. Numbers of metastable states. log〈N (h)〉/N versus N at different magnetic fields, see
legend (left). Data points show the field dependence of AROM(h) obtained from the fits, while the
full curve indicates the analytical results in the thermodynamic limit (right).

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

Figure 4. ASK(h) (bottom), AROM(h) (middle) and 1
π

e−h2
(top) .

(This figure is in colour only in the electronic version)
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Figure 5. Plot of eh2
AROM(h) for values of the magnetic field h between 1 and 5.

Note that we have AROM(0) ∼ 0.285 [16], while the asymptotic behaviour for large
magnetic field h does coincide with the Gaussian case (see figures 4 and 5).

This indicates that AROM(h) still remains non-zero for arbitrarily large h and hence for any
finite value of the external magnetic field the number of metastable states grows exponentially
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with the system size N. As pointed out in [7] for the SK model, this result is in agreement with
the observation that the AT instability occurs for all finite h at zero temperature.
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[6] Contucci P, Degli Esposti M, Giardinà C and Graffi S 2002 Thermodynamic limit for correlated Gaussian

random energy models Preprint cond-mat/0206007—Commun. Math. Phys. to appear
[7] Dean D S 1994 On the metastable states of the zero-temperature SK mode J. Phys. A: Math. Gen. 27 L889
[8] Derrida B 1981 Random-energy model: an exactly solvable model of disorder systems Phys. Rev. B 24 2613
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