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Introduction

The thermodynamical behavior of uniform systems showing phase transition, like
ideal solids, is well explained by statistical mechanics. Despite the fact that only a
few models can be solved exactly, the general mechanism underlining the passage
from a disordered state to a ordered one is clear in translationally invariant systems
and it has been formalized at the higher level in the theory of renormalization group.
Real materials are seldom, if ever, the idealized pure systems that are considered
by usual statistical mechanics. For example, magnetic crystals invariably contain
defects and non-magnetic impurities. Liquids, which are generally taken to be
composed of a single component, invariably have impurities dissolved in them. Thus
it is important to understand the effect of disorder on the properties of materials.
Spin glasses are the current frontier in the study of magnetic disordered systems.
They are systems of a collections of spins (magnetic moments) as a conventional
ferromagnet or antiferromagnet. However, the low-temperature state is not the
uniform or periodic configuration that is characteristic of conventional magnets.
Therefore in spin glasses there is no long range order such as ferromagnetism or
anti-ferromagnetism, but a new frozen ordered state. From the theoretical point of
view it is believed that in order to reproduce such a state two new ingredients (absent
in usual magnets) are essential: frustration and randomness. The frustration means
that there is competition among the interactions between spins, so that there is no
single spin configuration which minimize all the interactions simultaneously.
Randomness is usually introduced in pure (periodic) systems with the aim of
producing competition between positive and negative bonds between spins: the
former tend to align spins and the latter to antialigne them. Although there have
been many efforts devoted to understand the physics of the random spin glasses for

more than two decades, they are still far from fully understood due to the lack of
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rigorous theoretical predictions. Since the upper critical dimension of these models
is believed to be six, the behaviour in the real two and three dimensions could be far
from the mean field theory, which is so far the only well-established theory. Thus
one has to rely more and more on the numerical studies. At the present moment, the
outcome of these studies is a convincing evidence that a finite temperature transition
to an ordered spin-glass phase does exist in the Ising spin glass in three dimensions.
More controversial is the situation for the XY and Heisenberg spin glass, where is
still open the question if the lower critical dimension is three or four.

There has been also a great deal of study of periodic frustrated systems in
which disorder is not present (these are called fully frustrated model, an example
of which is the two-dimensional nearest-neighbour Ising model on a triangle lattice
with all bonds antiferromagnetic). In these cases apparently the effective free energy
landscape is too smooth to reproduce the complex spin-glass behaviour. The general
belief is that frustration, although necessary, is not sufficient alone to produce a
non-trivial broken ergodicity. Nevertheless, in recent years it has been considered
deterministic non-random models that, at least at the mean field level, show the
main properties typical of spin-glasses, in particular the existence of a huge number
of “metastable” states (valleys in the free energy landscape).

In this dissertation we study both deterministic model with glassy behaviour and

random spin-glasses. The outline of this work is the following:

e Chapters 1 and 2 are introductory. In the first it is reviewed the general
theoretical concepts and models in spin glasses theory, within the random
approach. After a brief Section in which experimental features are treated,
the main focus is on the mean field Sherrington-Kirkpatrick model, which is
at the present moment, the only well established theory. Other infinite range
models, like the p—spin models and the Random Energy Model, are treated
as well. Some remark on realistic short-range spin glasses are presented. In
Chapter 2 we review the “state of the art” for non-random models with a glassy
behaviour, showing the connection both with with structural glass transition

and with disordered systems.

e In the context of deterministic models, the sine model introduced in ref. [69]

and the “quadratic” model introduced in ref. [70] are our main concern



in Chapters 3 and 4. The high-temperature phase is studied by means of
high-temperature expansions. In particular we extend previous analysis for
dichotomic spin variables to the case of Ising variables of arbitrary spin.
Furthermore we study analytically the statistics of energy levels, giving a
full characterization of the energy distribution in the phase space. In the
low-temperature limit we investigate, both numerically and analytically, the
metastable states. At exactly zero temperature this amount to study the 1-flip

stable stable states, due to the long range behaviour of the interactions.

Within the realm of the random spin glasses, the XY model on a tube lattice
is considered in Chapter 5. We employ the zero temperature domain wall,
or defect energy scaling, to study it. Our motivation comes from the notice
that this one-dimensional model, though does not exhibit broken symmetry at
finite temperature, has been analyzed analytically, so that it could represent
a sort of test for the existing numerical techniques. On the other hand, we
will see that, applying numerical analysis, we gained some new informations
that enabled us to cure some wrong assumptions that were employed in the

analytical study.

The underlying ideas of mean field spin glass theory have also proved to
be fruitful in optimization problems and others research fields originally
not related to condensed matter theory, such as biology, neural networks,
optimization problems, digital images reconstruction and many others. New
applications of these ideas have been proposed in a continuous way and
still nowadays the “physics of complexity” is a growing subject. Following
the pioneering study of ref. [119], one of the original contribution of this
dissertation is to establish a strong connection between mean field spin-glasses
(random or deterministic) and portfolio optimization in futures markets. We

will deal with this issue in the last Chapter of this work.



Chapter 1

Random spin-glasses

1.1 Spin-glass materials

The classical examples of spin glass materials are noble metals (Au, Ag, Cu, Pt)
weakly diluted with transition metal (Fe, Mn, Cr) impurities carrying local magnetic
moments, which interact each other by Ruderman-Kittel-Kasuya-Yoshida (RKKY)
interaction [5, 6, 7]. The transition metal moments produce a magnetic polarization
of the host metal conduction electrons around them which is positive at some
distance and negative at others. Other impurity moments then fell the local magnetic
field produced by the polarized conduction electrons and try to align themselves
along it. Because of the random placements of the impurities, the result is competing
interactions. Many other materials (including magnetic insulators and amorphous
alloys) have been identified as having a transition of the spin glass type. In this
case the dependence of the interactions on the distance is completely different from
that in the crystalline metallic systems. Moreover also non-magnetic materials, as
ferroelectric-antiferroelectric mixtures and disordered molecular crystals, are known
to display a kind of oriental freezing. In these cases the role of magnetic moments
is played by electric dipole and quadrupole moments, respectively. We remand the

reader to ref. [1] for a comprehensive list of spin-glass materials.

1.1.1 Main experimental features

Experimental signature of spin glasses was first observed by Cannella and Mydosh

in 1972 [8]. They observed a sharp cusp in susceptibility at a temperature T, (see



Fig. (1.1)). This suggested that there was a continuous phase transition from a
paramagnetic phase to an ordered phase. Subsequently, more refined experiments
showed that the cusp in x,.. is very sensitively field-dependent and is not completely
sharp [9, 10]. The freezing temperature T, depends on the frequency of the applied
magnetic field, so that the “true” T, should be defined by the limit of vanishing
frequency. This qualitative feature of frequency dependence is peculiar of spin glass
materials and is absent in conventional magnets. This is related to the glassy nature

of spin glasses, with long characteristic time and the presence of metastable states.
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Figure 1.1: The ac susceptibility of Cu-0.1% Mn (x), Ag-0.5% Mn (e), Au-0.5% Mn (+),
Au-0.5% Cr (A) and Ag-1.0% Mn (O) versus temperature for a magnetic field H = 20 Oe
and 100 Hz (from ref. [8])



Another important feature that is a signature of the glassy properties in spin glasses
is the remanence and irreversibility below the transition temperature T, [11]. As it
is clear from Fig. (1.2), the resulting susceptibility depends on how to perform the
experiment, i.e. there is a difference between the “field-cooled” susceptibility and
the “zero-field-cooled” susceptibility. The “field-cooled” means that the sample is
cooled down below T, in the filed which is applied above T,.. The “zero-field-cooled”
is the case where the sample is cooled below T, in zero field and then the field is
applied. The former is, to a very good approximation [12, 13], independent of its
history, but the latter is not for 7' < T,. The fact that the magnetic response is
history dependent can be qualitatively ascribed to the existence of many roughly
equivalent (but very different!) spin configuration, so that the state which is reached
depends crucially on details of the experiment such as the frequency and magnitude
of the applied field, the speed with one cools down and whether one cools in zero or
finite field.
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Figure 1.2: The static susceptibility of CuMn vs temperature for 1.08 and 2.02% Mn. After
zero-field cooling (H < 0.050¢), initial susceptibilities (b) and (d) were taken for increasing
temperature in a field of H = 5.90 Oe. The susceptibilities (a) and (c) were obtained in the
field H = 5.90 Oe, which was applied above T, before cooling the samples (from ref. [11])



Other experimental properties of spin glasses below T are the following [3]:
* The remanent magnetization decays very slowly with time.
* A hysteresis curve, laterally shifted from the origin, appears.

* No magnetic Bragg scattering is observed in neutron scattering experiments,

thereby demonstrating the absence of long range order.

* No sharp anomaly is detected in the specific heat that only shows a broad

maximum at T.

1.1.2 Edward-Anderson model and disorder averages

The most simple model that has the two essential features, i.e. disorder and
frustration, necessary to describe the spin glass transition was introduced by Edward
and Anderson (EA) [14]. They put the spins on lattice sites (square in 2d and cubic
in 3d) and took the coupling between nearest neighbors spins to be independent
random variables J;; from some assigned distribution P(J;;). Then they proposed

a model Hamiltonian for spin glass as

1
H = 3 Z Jij Si - Sj (1.1)
<tj>
where S; are n-component spins. When n = 1 the system becomes Ising spin

glass,while the XY spin glass and Heisenberg spin glass are defined by n = 2 and
n = 3, respectively. The standard choices for the coupling distribution are the

symmetric Gaussian

PUg) = - exp |2 (12)
i) = =3 exp | — 5 :
and the double delta-function (+J model)
1 1
P(Jij) = 5(5((]1'3' — J) + Eé(Jij + J) (1.3)

In any case, the EA model is short-ranged: the J;; are different from zero only for
nearby pairs of spins, so that a spin interact only with its neighbors. The long-
ranged version of the model (known as “SK model”) is obtained by letting all the

spin interact with the others and it will extensively treated in the next Section.
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Since EA model is random, the free energy and thus any thermodynamic quantities
calculated from the free energy will be different from sample to sample. This requires
to perform an other average, the disorder average, in addition to the usual thermal
average for each realization of disorder. We denote by (- --) the thermal average over
spins configurations weighted with Boltzmann factor and by -~ the average over the
disordered couplings. There are two kinds of disorder average, the “annealed” and
“quenched” averages. In the former, the disorder is treated on the same footing
as the statistical variable such as spins, and can be used to describe the annealed
systems, where the random variables reach their thermal equilibrium. On the other
hand, if the random disorder is quenched and thus takes unique value independently
from the temperature, one has to consider the quenched average, which is the case
for spin glasses. The main difficulty in averaging comes from the fact that one has to
average the free energy ~ In Z, not Z itself. There is a nice trick to do this difficult
task, called the “replica method”, that will be diffusively applied to the SK model

in the next Section.

1.2 Sherrington-Kirkpatrick model

The first step in order to get some comprehension of the new physics of spin-glass
was to analyze the mean-field theory. It turns out to be highly nontrivial and has
been developed over more than a decade. Insofar it is the only well-established
spin-glass theory, even if a rigorous solution (from the mathematical point of view)
is still lacking.

The Hamiltonian of the infinite-range model introduced in 1975 by Sherrington
and Kirkpatrick [15] (nowadays referred as SK model) is defined as

1N N
H = 3 Z Jijoio; — hZUi (1.4)
ij=1 i=1
where J;; are symmetric (J;; = Jj;;) gaussian random variables with mean Jy and
variance J?:
1

p(Jij) = Norye e~ i =J0)* /27 (1.5)
V 4T

and o; = %1 are dichotomic Ising spin variables. The sum runs over all the possible

pairs of particles in a one dimensional lattice of N sites. The physical sensible scaling
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of Jy and J? in order the energy to be an extensive quantity is
Jo = Jo/N (1.6)

J=J/VN (1.7)

where Jy and J are O(1) quantities. In the following we will restrict to the case
Jo = 0: including a non-zero mean value as in the original articles [15] would
yield a competition between ferromagnetic and spin-glass order, without appreciable
physical consequences but with some complication of the formulas.

For a given disorder realization, one expect that in the high temperature phase
the local magnetization m; = (o;) is different from zero only if a magnetic field is
present and it vanishes when the magnetic field goes to zero; on the other hand one
naively expect that in the low temperature region there should be (as in the case
of ferromagnets) some freezing of the spin in the position which is mostly favored
energetically, hence the m; should be different from zero also at zero external field.
However the local magnetization m; depends on the coupling realization and it will
sometimes be positive and sometimes negative, that means the global magnetization
density (1/N)>; m; is zero. Therefore it is convenient to characterize the system

in terms of the so-called Edward-Anderson parameter
1N
_ 2
9BA = 37 i:E 1 m; (1.8)

1.2.1 TAP mean field equations

We start by considering the mean field equations of the SK model which were
introduced by Thouless, Anderson and Palmer [18]. The TAP proposal was to
compute the mean magnetizations directly from the mean field equations for a given
choice of the bonds {J;;} and then to average over disorder. Their starting point
was a high-temperature expansion of the free energy, originally derived by diagram

expansion:

- ) ()

ﬁ ZJszsz 4 Z )1 - g) (1.9)
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Rigorous derivation of this expression through diagrammatic analysis can be found
in ref. [19, 20, 21], while a different approach, known as “cavity method”, is given
in chapter 5 of ref. [2]. The physical interpretation of Eq. (1.9) is the following:
the first line is the entropy of a set of Ising spin constrained to have means m;; the
second term is the naive internal energy of a frozen lattice; and the last term is the
correlation energy of the fluctuations. This last term is usually called “Onsanger”
or “reaction” term, for reason that will be clear in a while.

The mean field TAP equations are then obtained from the extremization
condition F /0m; = 0. They read

m; = tanh |8 Jyym; — B2 J5(1 — mi)m; (1.10)
J J

The first two terms on the r.h.s. describe the conventional internal field in normal
ferromagnets. The third term describes the contribution to the internal field from
the spin s; itself. Following the argument made by Onsanger, the magnetization
m; at site ¢ produces a mean field m;J;; at site j, which induces a magnetization
Xj;jmiJij at site j. The ordering of the spin s; is induced by the internal fields of
the spin s; in the absence of the s;, so this term has to be subtracted from the full

mean field 3°; J;jm; in computing m;:

m; = tanh |8 Z Jij(mj — ijmiJij) (1.11)
J

Eq. (1.10) are recovered after inserting in the last expression the fluctuation-response
relation
Xij = Bl(sj = (s;)?) = B(1 — m3) (1.12)
In normal ferromagnets the reaction field can be ignored, since it is smaller than
the ordinary molecular field by a factor 1/N. On the other hand in spin-glasses the
reaction field, being quadratic in the couplings, is of the same order of magnitude
of the molecular field.
TAP equations (1.10) are N coupled non linear equations for the local
magnetization m; and their exact solution is an hopeless task. They can be
considerably simplified if one assume self averaging, that is, the error introduced

by substituting m? by the EA order parameter gzg = N~} 2 m? vanishes in the
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thermodynamical limit. Then the Onsanger term can be simplified and the equations
become
m; = tanh ﬁz Jijm; — ﬂQﬁ(l —qEA)mM; (1.13)
J
An analytic solution can be obtained in the critical region (7' ~ T.), while in the
low-temperature region (T" ~ 0) an approximated solution can be found by means
of numerical computations.
For T near T, one expects m; to be small and similar to the eigenvector M;
belonging to the largest eigenvalue J{*** = 2J of the exchange matrix Jij, so that

one can linearize Eq. (1.13) near gg4 = 0. Any eigenvector M; yields a solution if
1-28J+p%J2=0 (1.14)

Its only positive zero § = 1/ J determines the critical temperature T, = J. Therefore,
for T > T, = J there is only the paramagnetic solution gz4 = 0, while for T < T,
there is another solution (the physical one with the lower free energy) where gg4 is
different from zero. Note that without the reaction term the critical temperature
would be have been overestimated of a factor 2, that is the critical temperature
would have been T' = 2.J. For T just below T, expanding to higher order Eq. (1.13)

near qg 4 = 0, one finds:
T 2
qeA(T) =1~ -t o(T. - T)7) (1.15)
c

In the low temperature regime, T' <« T., TAP characterized the low-energy
excitations by the distribution p(h;) of the total molecular field h; = >, Jigmy,
neglecting possible excitations which might require the simultaneous reversal of more

than one spin. In fact, in the limit 7" — 0, Eq.(1.10) greatly simplify to
m; = sign(h;) (1.16)

Numerically they found that the probability distribution of the local field is linear
in 7 [18] (see also ref. [22])

mm:%- (h — 0,T — 0) (1.17)



Following the hint from Monte Carlo simulations, they further supposed a quadratic
dependence for gp4(T'), instead of the linear T dependence given by (1.15):
T2
gea(T) =1-« (?> (1.18)
c

Inserting this expression in Eq. (1.13) one has
m; = tanh [ﬂﬁz — ami] (1.19)

A relation between the coefficients a and h2 can then be obtained by imposing the

self-consistency equation

qEA = /0 m2(h)p(h)dh
v . dh

= hy? / 2h(m)—d 1.2

0, m (m)dm m (1.20)

which, after some integration, leads to the relation

K2 1 21n?2
ho 1, 2Im2+1 In2
J2 4 3 o

(1.21)
which leaves the only unknown parameter a. TAP argued that the physical relevant
value of a was the one which minimized hg, i.e. the one which gave the maximum
density of low-energy excitations. They found a = 2vIn2 =~ 1.665. Once « is
determined, thermodynamic quantities in the low-temperature region (7' < T,) can

be obtained from the free energy (Eq. (1.9))

X(T) ~ (%) (1.22)
e(T) ~ %oﬂ (%)2 (1.23)
S(T) ~ iaQ (%)2 (1.24)

Unfortunately, because of the complicated structure of the TAP equations, it has
not been possible to find analytically any general solution valid at all temperature.
Moreover the stability analysis, performed by Bray and Moore in ref. [23], showed
that the condition for the Hessian matrix 02F/dm;0m; not to have negative
eigenvalues is given by:

1—B2J%(1 —2gpa +1) >0 (1.25)
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where gp4 = %Zi m? and r = %Zi m;-l. So we see that the system of TAP
equations (1.10) makes sense only if the {m;} belong to a certain part of phase
space. We will see later, in the replica approach, that this part of phase space
correspond to the region above the so-called AT line in the (h — T') plane. The
solutions for which the eigenvalue spectrum is not positive, i.e. the one for which
condition (1.25) is not satisfied, are on and below the AT line. They are called
marginally stable in the sense that one has a divergent response everywhere along
and below this line. The physical quantity that display this divergence is the spin

glass susceptibility defined as

1 B2

XsG = 3 > xg = N > (oios) — (oi){(0;))” (1.26)
i i

It is worth mentioning that the condition (1.25) is identical with that for the

convergence of the free energy expansion [21], because the TAP solutions can not

be stable unless the subexstensive terms in the free energy expansion converge.

1.2.2 Exponential number of solutions of the TAP equations

Even if the complicate structure of TAP equations allow only for an heuristic
treatment, these equations have been very important because they gave the first
analytical indication of the complex structure of the free energy landscape in mean
field spin-glasses. It turned out that TAP equations have an exponential number
of solution Ny below T, [24, 25, 26]. At that time it was already suspected from
Monte Carlo simulations [16] that in SK model the free energy landscape is very
complicated, in the sense that there are many local minima, corresponding to pure
states and ergodicity is broken in a non trivial way. The discover of an exponential
number of solutions of TAP equations was the first direct hint of this complex
behaviour: one can associate to each “state” or “phase” a solution of the TAP
equation. On the contrary the inverse relation does not hold. There are many
solutions of the TAP equations which do not correspond to stable states. These
are called metastable states. FExactly at zero temperature, it can be shown that
in models with long-range couplings, as SK, metastable states coincides with 1-
flip-stable spin configurations, i.e. with configurations whose energy can not be

decreased by flipping any of the spins. According to the folklore a TAP solution
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corresponds to a stable state only if it is separated from other solutions by a barrier
whose height diverges with the volume, so that the systems is trapped forever in
the free energy valley associated with that solution. The number Ny of solutions
representing pure phases is considerably smaller than the total number of solutions
Nj. Indeed in ref. [27] it was proved that ultrametricity does not allow Ny to exceed
N.

The calculation of N, for the SK model will be presented in Sec. (4.2), where it
will obtained as a by-product of the same computation for the Random Orthogonal

Model. For the moment we give only the result at zero temperature [24, 25, 26]
N, = exp(0.1992N) (1.27)

and we show in Fig. (1.3) the total number of solutions as a function of the
temperature. For T" > T, one has only the paramagnetic solution m; = 0. With
decreasing temperature one has a sharp increase in the number of solutions.

Once that it was realized the existence of the exponential number of solutions, it
soon became clear that the heuristic analysis performed by TAP should be modified
in order to take in account this new information. A natural proposal was to assume
that the statistical expectation value of a quantity is the average of the values that
such a quantity takes in all possible solutions of the TAP equation, each solution

contributing with a given weight. In particular, the local magnetization is given by

N, .
(si) =m; = Z We My,
a=1

Ns
> we =1 (1.28)
o

where the different solutions of the TAP equations are labeled by a. The delicate
point was the choice of the weights w,. The first tentative was to perform a white
average (all the w equal to each other) [20, 26]. In view of the above discussion, it is
clear that the thermodynamical results are necessarily wrong (one finds a negative
specific heat at low temperature!) because the solutions do not contribute all in the

same way to thermodynamics. The right choice for the weight is

wy = —XP(=BFa) (1.29)

E;Vil exp(—pF,)
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Figure 1.3: Logarithm of the total number Ny of TAP solutions, divided by N, as a
function of the temperature (from ref. [24])

F, being the total free energy of the a-th solution. In this way the only solutions
which are relevant in the limit N — oo are those which have a low value of the
free energy. It finally turned out that it is very difficult to avoid the use of replicas
and such a computation is at least as complex as the evaluation of the free energy
using the replica approach. However introducing replicas one can shows that the
weighted average of the TAP equations gives the same thermodynamics as the replica
approach [28].

TAP equations are very tricky also from the numerical point of view. Nemoto
and Takayama [29, 30, 31] have investigated the stationary points of the TAP free
energy F{m;} (1.9) as defined by minimizing |VF| = /3;(0F/0m;)?. Starting

from the freezing temperature 7., they found an increasing number of solutions,
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80% of which are marginally stable.

1.2.3 Non-trivial broken ergodicity and order parameters

In normal ferromagnets, when the phase transition takes place, the ergodicity is
broken in a trivial way: one has only two “pure states” or “thermodynamic phases”,
i.e. the one with positive magnetization and the one with negative magnetization.
They are related by an overall spin flip. Above the Curie critical temperature the
free energy has only one minimum, corresponding to the paramagnetic phase of
zero magnetization. Below the critical temperature the free energy develops two
minima, corresponding to the states up- or down-magnetized, and the system select
one of this state and will never be found later in the other one. The notion that the
system can find itself in a state which breaks the symmetry of the Hamiltonian is
a very profound one. It means that the ergodic hypothesis is violated. The system
motion is restricted to the part of configuration space with positive or negative
magnetization. In calculating the thermal averages through statistical mechanics one
has to put the broken ergodicity by hand, restricting the trace used to define thermal
averages to configurations having positive or negative magnetization. Alternatively
one can achieve this restricted trace formally in the ferromagnet by keeping a very
small magnetic field in the Hamiltonian, calculating the trace over all configurations
space, taking the thermodynamical limit and in the end letting the magnitude of the
magnetic field to zero. The order of the limit is crucial and is essential to develop
an infinite barrier between the two minima of the free energy. More explicitly, in
a system of size N to select the positive magnetization state one needs a positive
symmetry-breaking field that is large compared to T'/N in order to give a negligible
relative thermal weight to the negative magnetization state.

From the TAP analysis described in the previous Sections, it emerges the picture
of a very complex free energy landscape in the SK model, so that one has at least to
address the possibility of non-trivial broken ergodicity. In the (N + 1) dimensional
space whose axes are labeled by the m; and F({m;}), the free energy function
has an exponential number of local minima, i.e. solutions of 9F/0m; = 0 with
the eigenvalues of the matrix BZF/Bmi(')mj all positive. If, in the limit of large
N, some of the barriers between these locally stable magnetization configurations

become infinite, one can partition the entire state space into mutually inaccessible
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“valleys”. Each of these valleys corresponds to a thermodynamic phase. Within
such a state there can be several sub-valleys which are local minima of F', but with
finite barriers separating them. All but the lowest of these correspond to metastable
magnetization configurations. When a system finds itself in one of this valleys it
will exhibit properties which in general are specific to that valley. They differ from
true equilibrium properties which involve averages over all valleys with appropriate
relative thermal weights. For example, there might be valleys (or at least metastable
sub-valleys) with very different magnetizations; this is the origin of the remanence
observed in all spin-glasses. In order to calculate the properties of the system in a
single valley, the trace over configurations in the partition function must be restricted
to the appropriate valley. If there are many possible states, whose free energies are
expected to be the almost the same, the imposition of an infinitesimal external field
uncorrelated with any mg* will no longer select out a single phase. Furthermore, we
are handicapped in trying to use infinitesimal external fields h{ proportional to the
mg to try to generate appropriately restricted trace because we do not know this
conjugate fields a priori.

Thus broken ergodicity makes the definition of relevant thermal averages in
general, and that of order parameters in particular, a highly non-trivial one. A
natural consequence of the existence of many phases is that a spin glass can not
be described by a single order parameter, but rather requires many of them. If we
regard ergodicity breaking as essentially dynamical in nature, the most natural order

parameter to consider is the one introduced originally by Edward and Anderson [14]:

gea = lim lim (s;(tg)si(to +t)) (1.30)

t—00 N—oo

where the average is over a long (eventually infinitely so) set of reference times
to. This will clearly be zero if the system is ergodic, and will be nonzero if it is
trapped in a single phase. One must take the N — oo limit before the ¢ — oo one,
since for a finite system the correlation will eventually die out as true equilibrium
is reached. Since an infinite system can never escape the valley it is, gz 4 measures
the mean square single-valley local spontaneous magnetization, averaged over all

possible valleys. That is, in terms of thermal averages:

apa = 3 wa(ms)? (131)
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where the weights w,, are given by formula (1.29). It can be shown that, in the mean
field SK model, gg 4 is self-averaging in the thermodynamical limit, i.e. it does not

depend on the disorder realization, so that one can also write
1 a2
qEA = NZZwa(mi) (1.32)
i«
qeA is not, of course, the mean square local equilibrium magnetization. The true

equilibrium or statistical mechanics order parameter is defined as:

2
qg=m?2= (Z wamf‘) = Z wawgmf‘mf (1.33)
(o7

af

or, equivalently,

1
1= Z Z wawﬂmg“mi’g (1.34)
i af
One can see immediately that ¢ differs from gg 4 in having inter-valley contributions.
Moreover ¢ is not self-averaging, so it is convenient to define it also for a single

sample:
=75 Ez mi =+ Ez C%ﬂ W WL TN (1.35)

One can picture the difference between g and gg4 dynamically by imagining N large
but finite, so that transition across the barriers are allowed. On a time-scale long
enough for the system to pass statistically many times through all valleys having
significant thermal weight, true equilibrium is reached and all inter-valley terms in
q contributes. On a short time-scale, no transitions between valleys have time to
occur, so gg4 is the physical relevant quantity. One can also imagine intermediate
time scales, where certain groups of valleys are accessible to each other, but there
is not time to climb over the higher barriers separating one group from another.
Then a quantity between these two limiting case is the physically relevant one.
This picture of a gradual interpolation between complete broken ergodicity and full
equilibrium is the physical basis of the Simpolinsky dynamical formulation of mean
field theory [32, 33]. The relation between the experimental measurement and the

order parameter can be given by the relation

x=pB(1-4q) (1.36)
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where y is the uniform susceptibility, which is equal to the local susceptibility x;; for
a symmetric bond distribution [34]. Of course, if the system is a particular valley,
what one measures is x = 5(1 — gr4), not an equilibrium susceptibility.

Coming back to the definitions of order parameters, it is clear that, since one has
many phases, it is interesting to ask not only about the mean square magnetization
in a single state, such as occurs in gg 4, but also about the correlation between states

One can consider the overlap (for a single sample) defined as
1
Gas = 57 D mim] (1.37)
i

By definition one has —1 < go3 < 1. In order to characterize the distribution
of overlaps between states, it is useful to introduce the probability distribution of

overlap [43]:

Pi(q) = (6(q — qap)) = Y_ wawpd(q — qap) (1.38)
of

One can also define the corresponding disorder averaged probability distribution

P(q) = Ps(q) = > wawpd(q — qap) (1.39)
of

Through the P(g) one can see that the equilibrium order parameter ¢ is nothing else

that the average overlap between pure states:

1
qg = NZZwawgmiamf
t af

= Z WaoWpYGap
ap
1

= [ Pa)adg (1.40)

On the argument that the correlation between phases cannot be greater than the
mean square magnetization in a single phase, it is natural to identify gpa as
the largest value of ¢ for which P(g) has support. The form of the probability
distribution of overlap P(q) can be used as a valuable tool to distinguish between
systems with conventional broken ergodicity and those with nontrivial broken
ergodicity. Below the critical temperature, for a normal ferromagnet P(q) is just the

sum of a pair of delta functions centered at ¢ = +m?, where m is the spontaneous
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magnetization. This is because there are only two equilibrium states related by an
overall symmetry. On the other hand, for a spin-glass P(g) may have a continuous
part, indicating the possibility of a continuum of possible overlaps between various
phases. The non-triviality of the function P(q) is the main characteristic of the spin
glass phase. Moreover we expect that the weights w, strongly fluctuate from one
realization of the disorder to another because the weights are sensitive to variations
in the total free energy of order one, i.e. of relative order 1/N. As a consequence
the function Pj(q) defined for one sample will also fluctuate when J;; changes and

it will not be self-averaging. The higher moments of the overlap are defined as:

® _ [ p(a)atd 1.41
=/, 7(q)g"dg (1.41)

and
® = @ — [ p(g)gtd 1.42
¢V =q = (9)¢"dq (1.42)

(1)

Just as ¢’ is not self-averaging if there is non-trivial broken ergodicity, neither,
in general, are the higher moments q(Jk). Using the property that in the pure
states the connected correlation functions of two spins are generally negligible in

the thermodynamical limit, one has:
1 I
g*) = NE ZZ [(Siy - - - 8ig)]? (1.43)
i1 ix

For example, considering the second moment, one has:

1
¢» = P(q)q*dgq

(1.44)
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1.2.4 The replica approach

The TAP approach presented in the previous paragraphs is the most direct method
to grasp the complicated structure of the free-energy landscape that is characteristic
of spin-glasses at the mean field level. On the other hand it does not allow for a full
treatment of the problem. In fact the solution of the model can be achieved through
a different approach, called replica method. The main thermodynamical quantity to

N—oo I V

Since the disorder average of the logarithm of the partition function can not be

carried out, the solution is based on the following identity (“replica trick”)

_ 1 —
nZ = lim — [Zn - 1] (1.46)
n—0n
so that one obtains
1 ___
- _ : : n _
f= KT Jim iy 771 (147)

The replica trick, introducing the limit n — 0, moves the problem of calculating the
disorder average of the logarithm of the partition function to the one of calculating
the disorder average of the n-th power of the partition function. This can be carried
out in a straightforward way for general integer n. Of course, one has to take the
limit n — 0 in the result, which is the main problem of this method. If one knows
the solution for a finite number of replicas, the analytic continuation from integer
n’s to n — 0 is not unique (see later).

For positive integer n one can write

Z"{Jij}) = Trigi 2, onyexp |—B Y H(c% {Ji}) (1.48)
a=1

where we have introduced 7 replicas of the system with the same disorder realization
{Jij}. Indeed the partition function of n non-interacting replicas of the same system
is the partition function of the original system to the power n; the spin variables of*
carry two indices: the upper one denotes the replica and goes from 1 to n and the

lower one denotes the site and goes from 1 to N. In the SK model, performing the
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gaussian integration over the disorder, one simply has:
zn = /HdJijP(Jij)Z"({Jz'j})
ij

J22

tj aff

ZZO’O’ —i—hﬂZZa] (1.49)

= TT{UI,Uz,...,O'n} exp [

Then we have converted the disordered problem into a non-random one involving
4-spin interactions. One can proceed further: rearranging terms in the summations

and extracting in the double sum over a and 3 the term with o = 3, one has

jZIBZNn J2,82

7" = TTis1 02, om} €XP |: 1 v Z <Z aag/j) + hp Z af‘] (1.50)
at

(ap)
where (a, ) means summation over a # (. Using the gaussian identity
1 9 A /2 ptoo 1 9
1y o] _ (A _Z 1.51
exp [2/\a] (27r> [m d:vexp[ 2/\:10 —{—a)\ac] (1.51)
witha =%, af‘o? and \ = % B2J? and introducing a set of dummy variables {y®?},
one has
_ 722N +o0 N32.J2 1/2 1 .
Z" = exp m / H peJ dy“ﬂ exp | —=Np2J? Z (yaﬂ)2
4 oo 2m 2
(aB) (aB)

TT{g1 62, gn} €XP [Bzﬁ Z y*Po O‘Uﬂ + hﬂZaf‘]
i(apB) ia
(1.52)
Thus the spin have been decoupled and one now has a single site problem. In return
for this simplification, one has to deal with couplings between spins in different
replicas. The single-spin property allow to evaluate the trace over all state of the
nNN spins of* as the trace over all state of the n spins on a single site ¢ raised to

the power N. In formula one has:
Trigt o2, om exp[z g(07")] = exp[N InT'r {503 exp g(0*)] (1.53)
%

where g is an arbitrary function. In the end, recalling Eq. (1.47), one is left with

the following expression for the free energy:

f=—-KT lim lim — {/H ( ﬂQ‘ﬂ) dy®® exp(—NA[Y]) — 1}

N—oon—0 N

25



with

252 2 72 2 72
AlY]=— 5 n +ﬂT Z(yaﬁ)Q—lnTT{aa}eXp ﬂT Z y*Pooh —I—BhZaa
(eB) (aB) @
(1.54)

Here we have denoted by Y the n x n symmetric matrix whose elements are y,3.
Assuming that the two limits n — 0 and N — oo can be interchanged, the saddle-

pint method can be applied in the thermodynamical limit N — oo:

/ dY exp(—NA[Y]) ~ exp(—NA[Y;)) (1.55)
where Y} is the matrix that minimize the function A[Y], that is, the matrix elements
Yo # are the solution of the n(n — 1) saddle-point equations

0A
ay—o‘/j =0 (156)

This equations can be written under the form of self consistent equations:
yi” = (0%P) (1.57)

Once the solutions yg P of the saddle point Equations (1.56) have been found, then

the free energy reads:

,32 j2

f = —KTlim{
n—0

oy (yf:ﬂ)?]

(aB)

+% InT7 {50} €xp [g > yFP ool 4 ﬁhZaa] }(1.58)
(ap) @

Before going ahead with the solution of the saddle point equations, one has to express

in the replica formalism the spin glass order parameters that have been introduced

in previous Section. It can be easily shown that the spin glass equilibrium order

parameter ¢ is the n = 0 limit of the spin-spin correlation function between replicas

for any arbitrary site ¢, provided that « # £:

_ 1 a, B
q= %13% <Ui a; ) (1.59)

Comparing Eq. (1.57) and Eq. (1.59) one realize that

. af
— 1.
g = lim v (1.60)
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In the same manner one gets for higher overlap moments
(k) Al ap 1k
— 1 o
g\ = Ali% {<0i of )} = %ml {yo } (1.61)

The previous equation is not ambiguous if all ygﬁ are equal (this means that the
replica symmetry is not broken as it will be shown in the next paragraph). In the

A are not

case where the replica symmetry is broken the various matrix elements y;
all equal and one must be a bit more careful. It turned out that one must average
over all possible ways of breaking the replica symmetry. The generalization of Eq.
(1.61) is the following [20, 43]:

¢® = tim ——— 3 fyer1 (1.62)

n—0 n(n — 1) by
The correct replica expression for the overlap probability distribution is

P(q) = lim oy C%é:ﬂé -y’ (1.63)

That is, comparing Eq. (1.38) and Eq. (1.63), the distribution of the values of

fina replica-symmetry breaking solution must be the same

the matrix elements y;
as the distribution of overlaps between different pure states when there are many
states. This show the intimate connection between broken ergodicity and broken
replica symmetry. Finally, we can identify the Edward-Anderson order parameter

B

g4 with the largest y5” in a broken replica symmetric solution:

gra = max yg’ (1.64)
af

1.2.5 Replica symmetric solution

The simplest approach for solving the saddle point equations (1.56) is the so-
called replica symmetric ansatz, originally proposed by Sherrington and Kirkpatrick
[15, 16]. Since the n replicas are indistinguishable (the function A[Y] is left invariant
when we exchange some of the lines or the rows of the matrix Y), it is natural to
parameterize the matrix Y in the following form:

Yy = { g ifa?p (1.65)

0 otherwise
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With this parameterization, carrying out the calculations, one finds:

_ B
f=-Tra-d)

_ dz
V2T

where the value of ¢ is determined self-consistently by the unique saddle-point

e 27 In[2 cosh(B.J/qz + Bh)) (1.66)

equation

dz 1,2 ~

= e~ 2% [tanh(BJ/gz + Bh))? 1.67
0= [ S=e i tan (8T gz + h) (1.67)
Counsidering the case of zero magnetic field, the previous equation locate the

transition temperature of the model. Expanding the r.h.s. in powers of q one

has:
N 9 -
qg = d_;ﬂ_e_%zz |:252,82J2q - §z4ﬂ4J4q2 +...
= q(BJ)? —2¢*(B)* +... (1.68)

from which we find 7, = J and ¢(T) = 1 — % + O((T, — T)?) for T just below T,
as in the heuristic TAP analysis.
Eq.(1.67) can be solved numerically at any temperature 7. The solution is very

appealing because the root mean square local magnetization ¢*/2

behaves roughly the
way the magnetization does in the ferromagnetic case (see Fig.(1.4)). Similarly the
susceptibility obtained from this ¢ using the relation (1.36) seems very reasonable,
having at T' = T, the cusp revealed in experiments (see Fig.(1.4)). The specific heat,
calculated through the free energy (1.66) displays a cusp at 7T, in disagreement with
the experimental data. However this is not a serious drawback because a mean-field
model does not necessarily represent a real spin-glass material.

Despite the appealing results found by Sherrington and Kirkpatrick (in particular it
would seem that the spin-glass transition fit nicely into the standard theory of phase
transition, the role of the order parameter being played by the root mean square
local magnetization), this mean-field solution is unphysical at low temperatures.
It gives a negative entropy while in a discrete system the entropy must always be
positive (it is the logarithm of the number of allowed configurations!). This can be
seen expanding Eq. (1.67) to the first order in the temperature for 7 — 0. One

finds a linear temperature dependence for ¢

o(T) =1 %% + o(T) (1.69)
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Figure 1.4: (a) The root mean square local magnetization ¢'/? vs. T/T.. (b) The
susceptibility x(T)/x(T.) vs. T/T, (from ref. [16])

so that the free energy is given by

\/7J+—+ (T) (1.70)

and the entropy at T'=0is s(T' = O) = —1/2m.

1.2.6 Stability analysis and AT line

From the computational point of view, the reason for the unphysical low temperature
behaviour of the replica symmetric solution, can be traced back to the fact that
the Hessian matrix 92A/0y*#9y"® evaluated at the SK saddle point is not positive
definite, so that the steepest descendent procedure is meaningless. De Almeida and
Thouless [17] performed a stability analysis of the SK solution, calculating all the
eigenvalues of the Hessian matrix and imposing that they are positive. They found

the following condition:

1> (8F)? e~ 7 [sech(8J gz + Bh)]* (1.71)

This equation defines a line T'(h) in the h — T plane, known as AT line, marking
the boundary of the region where the SK solution is stable, as shown in Fig.(1.5).
This is exactly the same condition we have already noticed for the stability of the

TAP free energy, Eq. (1.25). It can been shown that the latter equation coincide
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also with the condition for the spin-glass susceptibility xsa to not be negative. The
naive replica symmetric approach to evaluate the integral is correct for every n > 1,
but fails in the region 0 < n < 1: this means that the analytic continuation of the
integral from its values on the integers down to its value at n = 0 is unjustified. The
replica symmetric ansatz gives the correct saddle point for evaluating the integral
only above a certain temperature T'(h). At low temperature one must look for a new
solution of the Eq. (1.56) such that the Hessian matrix has no negative eigenvalues.

This requires to break the replica symmetry.

H/J

Parisi

0 | | | |
0.2 04 0.6 0.8 1.0 717

Figure 1.5: Plot of the Almeida-Thouless (AT) line for SK model. To the right of the
line, the SK solution with a single order parameter is correct, while to the left of the line
the Parisi solution (see Section 1.2.7) is believed exact. The Parisi solution represents the
many valley structure of the phase space and non-ergodic behaviour. The AT line, therefore,
signals the onset of irreversibility (from ref.[17])

1.2.7 Parisi solution: replica symmetry breaking

Since the replica symmetric ansatz for the saddle point matrix Yy gives an instable

solution, there have been several attempts to exhibit a different ansatz such that
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the solution is stable [35, 36, 37, 38]. At the present moment only one form of the

matrix is known which satisfies the requirement of having all Hessian eigenvalues

non negative. This have been formulated by Parisi [39, 40, 41, 42, 43]. There is a

widespread agreement that this choice is the correct one: the results of this approach

agree with the existing numerical simulations of the SK model. The stability of Parisi

solution has been explicitly checked in ref. [44].

Parisi ansatz has the following hierarchical form. One starts with the SK form, in
which all elements of the Y matrix have the same value gy (except the diagonal one
which are taken to be zero). One the break the big n X n matrix into n/my x n/m4
blocks of size m1 x m1. In the off-diagonal blocks one leaves ¢g, but in the diagonal
blocks one replaces gy by g1 One then does the same thing within each of the blocks
along the diagonal: they are broken into m;/msg X mq/mgo subblocks, each of size
mo X mg, and in each of these along the diagonal one replaces g; by ¢2. This
procedure is then repeated infinitely many times. A typical form of the Y matrix
with two level of replica symmetry breaking is the following (here n = 8, m; = 4,
my = 2):

[0 @ @ @1 @ % P D
2 0 ¢ ¢ 9 9 9
@ @1 0 g2 g G 9 9
@ @1 @2 0 g g 9 9
@ 9% 9 9 0 ¢ ¢ a
g 9 9 9 ¢ 0 ¢ ¢
9 9 9 9 g g 0 ¢
g 9 9 9 ¢ ¢ g 0

If one imagines doing this iterative construction for positive-integral-dimensional

matrix, then each m; has to be evenly divisible by m;;1, which requires
n>mp>mg>...>1 (1.72)

But in the n — 0 limit, one must turn this around and take
O0<mi<myg<...<1 (1.73)

instead. In the limit where the procedure is done infinitely many times, the m;

become continuous: m; — z, 0 < £ < 1. The information in the set of ¢;’s and m;’s
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is then contained in a unit function on the unit interval defined as
q(z) = ¢ if m; <z <miqr (1.74)

The overlap probability distribution is so expressed as

) 1 apy (1 _ dz(q)
p@:mmgﬁa(q_%ﬂ)_ | dzdta = at) = = (1.75)

n—0n

where z(q) is the inverse function of ¢(z). It is evident that g(z) must be a non-
decreasing function in order that this inversion can be performed.

Within the Parisi parameterization the free energy becomes a functional of g(x)
and it must maximized with respect to ¢(z). Although the exact solution requires
an infinite number of steps of replica symmetry breaking, good results are already
obtained for small values of the number of steps (for example the entropy becomes
—.003 to be compared with SK solution —.17 and with the exact 0 value). The free
energy can be explicitly computed using the whole symmetry breaking pattern near
the critical temperature by expanding the functional A[g] in powers of ¢ [41]. The

main result is that ¢(z) is continuous function with the following properties

g(z) =¢(0) for 0 <z <z
q(z) =2z for zp <z <11 (1.76)
q(z) = q(1) for z;1 <z <1
where )
{ g(0) = 3 [/ 2]* 3o = }q(0 (1.77)
q(1) = qpa 1 = 3q(1)

Physically, being ¢(1) the largest overlap it must be identified with the single-phase
order parameter gp4. When the magnetic field becomes zero the function ¢(z)
vanishes at x = 0. As the field increase, the plateau at ¢(0) rises, and once it reaches
the height of the second plateau at ¢(1), the only solution is z independent. That
is the replica symmetry breaking disappears and one is back to the SK solution.
One recognizes the point at which this happens as the AT line discussed in the
previous Section. The solution is shown in Fig. (1.6), including the behaviour for

finite field h. As a consequence of the behaviour or g(z), the function P(g) has two
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Figure 1.6: The Parisi solution for ¢(z) close to T' = T,. The solid line is for h = 0 and
the broken line for small h (from ref.[41])

delta functions, one at ¢ = ¢(0) and the other one at g = ¢(1), plus a smooth part
with support in the interval ¢(0) < g < ¢(1). In the limit A — 0 the delta function
at ¢(0) disappears while when h increases and reaches the critical magnetic field
of the AT line the two delta functions collapse into a single one. The agreement
between the form of P(q) obtained by Monte Carlo simulations [47] and the one
obtained from Parisi ¢(z) is striking (see Fig. (1.7)). The important point about
the form of this solution is the presence, in addition to the delta function spike at
g = q(1) of a continuous part extending down to ¢ = 0. There therefore must exist
very many states resembling each other in all possible degrees. Another important
feature of the Parisi theory is the lack of self-averaging of certain quantities, like the
single sample equilibrium order parameter gy, the probability P;(q) and all other
overlap moments, and the susceptibility. On the other hand, one can see very simply
that quantities such as equilibrium energy, free energy, or magnetization, which do
not involve inter-valley correlations, will be self-averaging. An even more dramatic
and celebrated feature than the lack of self-averaging which has been discovered in
Parisi solution is ultrametricity [45, 46, 2]. This is the terminology for a very special

hierarchical structure in the overlaps between the various phases. It is revealed by

33



3.0

I T |
F g
S

o
.
x

o

zzz=

LS
[3%]

2.0
Pn(q)

1.0

Figure 1.7: Data for Py(q) for the SK model for several size at T = 0.4T,,h = 0. The
distribution has been symmetrized, so only ¢ > 0 is shown. The dotted line is the prediction
of an approximate solution of Parisi’s equations (from ref. [47]).

computing the joint distribution of the mutual overlaps between three randomly

chosen states:

Pr(q1,q2,03) = Y w*wPw6(q1 — qap)d(a2 — 84)6(q3 — Gya) (1.78)
apy

In replica formalism the disorder average of this quantity is

P(q1,92,93) = Pslq1,q2,93)
= ! _ 9B _ B o

(aBv)

and in the Parisi parameterization it becomes

P(q1,q2,q93) = %P(QI)x(QI)‘S(QI —q2)6(q3 — q1) +

1

2 [P(q1)P(q2)8(q1 — g2)0(g2 — ¢3) + permutations] (1.80)

Defining the distance between two configurations in the N-dimensional spin

configuration space to be the fraction of spins which are different in the two states,
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i.e. dog = 3(1 — gup), then the previous expression says that, if one take any three
states, either they are mutually equidistant or two of the separations are equal and
greater than the third. This implies that the space of states has a sort of family
tree structure in which the degree of relatedness in the family is associated with the

degree of overlap.

1.3 Others infinite ranged models
1.3.1 p-spin model and the Random Energy Model

The SK model discussed so far is a special case of the more general p-spin model.
One can generalize the SK model by replacing the random pair interaction in Eq.

(1.4) by random p-spin interaction. The Hamiltonian is then
H=— Z Jiy jigyonnyipTiy Tig * ** T, (1.81)
(i152,5ip)
Here again, the spins are Ising variables, the summation is over different indexes
and the probability distribution of the couplings has to be scaled with N in order
to ensure an extensive free energy as

NpP-1
P(Jiy jiy,..ip) = ( > exp

iy

_ (Jil,iz,...,ip)ZNp_l
J2p!

(1.82)

The SK model is recovered in the case p = 2. The relation between all these p-spin
models can be seen in the statistics of the energy levels. Considering an arbitrary
spin configuration o), the probability density that the energy of this configuration

is F can be written as

P(E) = §(E — H[(oM)]) (1.83)

For symmetrical bond distribution, using gauge transformations, it can be shown
that this average does not depend on the configuration for which it is evaluated.
Therefore it can be calculated over any configuration, for example the one with all

spins up. The result is the same for any value of p:

P(FE) = ! i 1.84
()_\/Tj?exp _N—ﬁ (1.84)

Thus, at this level, all random p-spin behave identically. To see the difference

between them, it is necessary to go to higher order statistics, e.g. the joint probability
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P(Ey, E;) that two given configuration of spins o(!) and o(?) have, respectively,

energies ) and Ey

P(Ey, By) = 6(E — H[(cM)])d(E — H[(c®)]) (1.85)

It turns out that this probability distribution depends only on the distance between

the two configurations, namely, on the number of identical spin, i.e. on the overlap

1,2 1 1) (2
g2 = = ;0.( )o@ (1.86)
One finds
2 _ 2
P(Ey,Es) = = L exp |[— () + B2) = = (B) = Bo) =
\/Nmp(l +P)(1— ) 2N(1+¢gP)J? 2N(1—qP)J
(1.87)

Now, the important thing which was pointed out by Derrida [48], is that, in the
limit p — o0, ¢? — 0, so that

P(E, E3) — P(E1)P(E») (1.88)

One can consider also the probability distributions of three or more levels and again
when p is large these probabilities factorize. In this sense, the limit p — oo of the
random p-spin model is equivalent to the Random Energy Model (REM) defined by

the following three properties:
1. It has 2V energy levels E;.
2. The energy levels are distributed according to Eq. (1.84).
3. The energy levels are independent random variables.

The thermodynamics of the model is most easily evaluated in the microcanonical
ensemble. The average number of level with energy E is just P(E) multiplied by

the total number 2V of levels:

2
n(E) = \/%ﬁ exp lN <1n2 — NE2—ﬁ>] (1.89)
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One can notice a critical dependence on E: for |E| < Ey = NJvIn2, there is an

exponentially large number of levels, and therefore a finite entropy

E2
On the other hand, for |E| > Ejy, there are no levels left in the thermodynamic limit,
and therefore no entropy. Using 1/T" = dS/dFE one finds that the free energy is

| ~Twm2-J?/4T T >T.
g ‘{ ~Vinz T<T, (1.9

where the critical temperature is

J
T — 1.92
‘" 2y/In2 (1.92)

Below T, the system get stuck in the lowest available energy level, E = —Fjy and

the entropy vanishes.

The similarities and differences between the REM model and the SK model were
illuminated very elegantly by Gross and Mezard [49], by solving the p — oo of
the p-spin model explicitly in the replica formalism. They found broken replica
symmetry, but only one level of the Parisi hierarchical replica-symmetry-breaking
scheme is necessary, rather than the infinite number required in the SK (p = 2) case.
The restricted nature of the replica symmetry breaking in this case means that Parisi
order function g(x) consists of two flat portions at values go = 0 and ¢; = 1 (in zero
external field), with a discontinuous jump between them at z = 7'/7,. Thus the
overlap distribution function P(gq) for the REM consists of a pair of delta-functions
(see Fig.(1.8))

P@) = 0@+ (1= 7 ) bla 1) (193

T, Te

In this sense the REM is much simpler than the SK model; Gross and Mezard
called it “the simplest spin glass”. On the other hand, it also exhibits more generic
behaviour: the first order behaviour of the order parameter ¢(1) = gg4, which jumps
discontinuously at T, occurs for all p-spin models with p > 2 [50, 51]. The SK case
is the only one with a continuous gg4. To be more precise, for finite p > 2 there
is a transition from the disordered phase to a partially frozen phase characterized

by a step function g(z) with values 0 and ¢; < 1. As the temperature is lowered
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further, a second transition occurs, leading to a phase described by a continuous
order parameter function. Also of interest is the spherical p-spin interaction spin
glass model whose static properties have been throughly using the replica method
[52] (see [53] for an analysis of the relaxational dynamics). In particular, the spin
glass phase of this continuous model is described by a step order parameter function,
i.e. the one-step replica symmetry breaking is the most general solution within the

Parisi scheme.

(a) (b)
q P(q)
1+ s
qo
|
I |
"y N o L

Figure 1.8: ¢(z) (a) and P(q) (b) for the random energy model.

1.4 Realistic spin-glasses

Although the spin glasses have been the subject of considerable attention for a
long time, the description of the realistic case with short-range interaction is still
controversial a issue. The upper critical dimension d,, above which the mean field
theory becomes valid, is believed to be d, = 6. Hence, the properties of the real
two and three dimensional spin glasses are far from trivial. As we know from the
critical phenomena, of conventional pure systems, the phase behaviour depends on
the spin dimension as well as the spatial dimension. The Ising spin glass, which has
been studied most among spin glass models because it is the simplest among them,
is now believed to have a finite temperature phase transition in three dimension,

but not in two dimensions. Thus, the lower critical dimension (LCD) for Ising spin
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glass has been believed 2 < d; < 3.

For vector spin glass such as XY spin glass and Heisenberg spin glass, their LCD
have been suggested d; = 4, which means that only Ising spin glass order is possible
in the three dimension. However, the situation has not been clear as Ising spin
glass since one has to deal with continuous variables in addition to randomness and
a growing numerical evidence in favor of spin glass order in the tree dimensional
vector spin glass is accumulating. Furthermore, there is an additional feature in a
vector spin glass, the existence of two-fold symmetry like Ising in addition to the
obvious rotational symmetry, which was at first pointed out by Villain [92] and
which is one of the issues that will be studied in Chapter 5.

Concerning the nature of the spin glass phase in short-ranged models, two principal
theories have been investigated: the “droplet model” proposed by Fisher and Huse
[64, 55, 56, 3] and the replica symmetry breaking of Parisi. The main difference
between these theories consists in the number of large-scale, low energy excitations.
RSB theory follows the exact solution of the infinite range SK model in predicting
that there are excitations which involve turning over a finite fraction of the spins and
which cost only a finite amount of energy in the thermodynamical limit. The droplet
theory argues that the lowest energy excitation involving a given spin and which has
linear spatial extent I typically costs an energy LY, where 0 is a positive exponent.
Hence in the thermodynamical limit, excitations which flip a finite fraction of the
spins cost an infinite amount of energy. The difference between the RSB scenario
and the droplet model seen in the form of the order parameter function P(g). In
the former, as already said, P(q) has delta functions at (plus or minus) the Edward-
Anderson order parameter qg 4, corresponding to ordering within a single valley, and
a tail with a finite weight extending down to ¢ = 0. In the latter P(q) is trivial,
i.e. it has only delta functions at +qg 4. Unfortunately in the finite systems which
are employed in numerical simulations finite size effects are always present so that it
has been impossible till now to identify which of the two conjectures are applicable

to the real short-range case.
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Chapter 2

Deterministic models with
glassy behavior

2.1 General features of deterministic models

A main issue in glassy systems is the analogy between glass-forming liquids and
discontinuous spin-glasses, first pointed out in the pioneering works by Kirkpatrick,
Thirumalai and Wolynes [59, 60, 61, 62, 63]. In both cases the thermodynamical
properties can be indeed related to the dynamical evolution in an energy landscape.
In liquid theory one can define the notion of inherent structures [64] (local minima
of the potential energy, each one surrounded by its attraction basin or valley) and
configurational entropy, i.e. the logarithm of the number of these minima divided
by the number of particles in the system. Then the low-temperature dynamical
evolution can be described as a superposition of an intra-basin “fast” motion and
a “slow” crossing of energy barriers. If the temperature of the system is small
enough, namely less than the Mode Coupling critical temperature Ths¢, the system
gets trapped in one of the basins. Since the number of energy minima diverges
exponentially with the size of the system, a thermodynamic transition can be
associated with an entropy crisis: the Kauzmann temperature Tx of the glassy
transition corresponds to the vanishing of the configurational entropy. We refer the
reader to [65] for an overview on equilibrium thermodynamics of glasses.

Consider now the class of discontinuous spin glasses, i.e. the mean-field models
involving a random p-spin interaction. Also these models show a dynamical

transition at a temperature Tp (corresponding to Ths¢) where dynamical ergodicity
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breaks down; a thermodynamic entropy-driven transition takes place at a lower
temperature T psp (corresponding to Tk ), at which replica symmetry breaks down
with a “one step” pattern. Here the local minima of the free energy correspond
to the solutions of the mean field TAP equations. Anyway, in infinitely connected
spin glasses at temperature 7' = 0, metastable states with respect to any dynamics

reduce to 1-spin-flip stable states.

The main gap in the analogy between structural glasses and discontinuous spin-
glasses is that in the latter models, unlike the former, the couplings between spins
are quenched random variables. A significant, recent step in filling this gap has
been made by the introduction of deterministic, i.e. non-random, spin models which
show a complex thermodynamical behaviour very similar to the one of discontinuous
spin-glasses [67, 68, 69, 82, 70, 71]. In the low temperature phase, these systems
have a very slow dynamic and ageing effects and there exists a very large number
of metastable configurations. Nevertheless they are completely deterministic, in the
sense that the couplings are fixed in the very beginning and not taken from a random
distribution (as it is, for example, in the SK model which has been presented in the
previous chapter). It is the high degree of frustration among the couplings, not
the disorder, to generate a huge number of metastable states and thus the glassy
behaviour. The discovery of these models proved that disorder is not necessary to

reproduce a complex free energy landscape.

In general, in these models, the following scenario holds:

e There exists a dynamical phase transition to a glassy phase. At this
temperature Tp the order parameter experiences a jump, correlation time
diverges (i.e. correlations functions do not decay exponentially as they do in

the high temperature regime) and aging effects start to appear.

e At alower temperature, there is a static equilibrium phase transition associated
with the vanishing of the high-temperature entropy. Below this temperature
Ts there are many equilibrium states available to the system and the system

freezes in one of them.
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2.2 Frustration

The idea underlying the introduction of deterministic models is that highly and
irregularly oscillating couplings among the spins enable to reproduce frustration,
yielding a complex landscape for the free energy of the system: one says that
disorder is “self-induced”. The concept of frustration was introduced by Toulose
in ref. [57]. Consider a two dimensional +J EA model on a square lattices. The
elementary unit of lattice, namely the square of 4 spins and their mutual 4 couplings,
is called a “plaquette”. Since the bonds are random and independent, it is equally
like to find an even or an odd number of negative bonds around the contour of the
plaquette. If this number is even, then it is always possible to find a pair of spin
configuration (related by an overall flip) which satisfy all the bonds. But if this
number is odd, one can not satisfy all bond simoultaneously, so that there will an
extra ground state degeneracy corresponding to the freedom to break any one of
the bonds. In the former case one says that the plaquette is unfrustated, in the

latter it is frustrated. The situation is depicted in Fig. (2.1). If the magnitude of

(@ (b)

Figure 2.1: Frustration in a square lattice: (a) an unfrustated plaquettes (b) a frustrated
plaquette.

the bonds is also random (as, for example, in the gaussian EA model), the exact
degeneracy will be broken. Nevertheless the frustration still gives a possibility of
low-lying metastable configurations that would be absent in the unfrustated case.
On the other hand, true frustration requires more than a simple mixture of positive
and negative interactions. The classical example of a system having positive and

negative interactions but which is not frustrated is the Mattis model [58]. One takes
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the bonds as J;; = J¢;§; where §; are independent and takes on the values +1 with
equal probabilities. Half of the bond are indeed positive and half are negative, but
they are not independent. In fact the product of the bonds around any plaquette is
JioJogJ34Jy1 = J4£1£25253§3§4§4§1 = J* > 0. That is, all plaquettes in the Mattis
model are unfrustrated. Indeed, by making a change in how to define “up” and
“down” locally, i.e. defining new spins o, = £;0;, the Mattis model is equivalent (in

zero external field) to a uniform ferromagnet.

2.3 A random approach to deterministic models

Due to the deep similarity between dynamical and thermodynamical properties of
deterministic models and random systems (especially the random spin glasses with p-
spin interactions), it has been conjectured that techniques from the realm of disorder,
such as replica theory, can be used to solve deterministic models.

In Chapter 1 it has been reviewed how replica method has been applied quite
successfully to the analysis of systems in which quenched randomness play a major
role. There is nothing a priori random in deterministic models and the replica
method seems definitively out of place. However, one can hope to use the replica
method to gain informations on a deterministic system by introducing a random
model which mimics its properties. One has to identify such a disordered system
on the basis of some general principle. One possible approach [67, 68] is based on
considering a Hamiltonian H ({J;;}) which depends on quenched control parameters
{Jij}, which are randomly distributed. For a particular realization of the sequence
{Jij} such a random Hamiltonian should coincide with the original deterministic
Hamiltonian. If one is able to use the replica approach to compute the average of
the thermodynamic functions for the random system, then one can hope that the
result obtained for a generic realization of the random variables {J;;} is the same as
one would have obtained by selecting the exact {J;;} sequences corresponding to the
original deterministic Hamiltonian. Of course, this way of reasoning is potentially
very dangerous and can lead to a disaster (it is enough to think about the three
dimensional Edward Anderson model that has nothing to do with the ferromagnetic
three dimensional model). The critical issue is how generic is the special {J;;}

sequence which gives the original deterministic model. This problem cannot be

43



solved a priori . One can verify, a posteriori , if the deterministic and the random
model have the same high-temperature expansion.

By applying the random approach to deterministic models it has been shown
that the static transition is relegated to replica symmetry breaking [67, 68] , while the
dynamical transition can be associated with the so-called marginality condition [69].
This condition corresponds to the search for certain saddle points of the free energy
(not the true maxima like in the static case) such that one particular eigenvalue
of the stability matrix vanishes (the so called replicon eigenvalue) [76, 77]. This

condition corresponds to the temperature at which dynamical stability is lost.

2.4 Low Autocorrelation Model

The Low Autocorrelation Model (LAM) is an optimization problem in which one
searches for string of binary digits with minimal autocorrelation. Sequences of this
kind are important in favoring efficient communication, so the problem has relevant
practical applications. One starts considering a sequence of length p of spin variable

{oj},7 =1,...,p that can take values +1 and the following Hamiltonian:

H=-) Cf, (2.1)

where C}, are correlation functions which connect spins at distance k. The choice of

the boundary conditions defines two different variants of the model

e The periodic and translationally invariant model is defined by using periodic

boundary condition, i.e. oj4, = 0;, so that one has

p
Ck =) 0j0j4k, (2.2)
=1

e The open model is defined by using open boundary condition, so that one sums

only on p — k terms:
p—k

Ok = Z 0j0j+k- (2.3)
j=1
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2.4.1 Static equilibrium transition

The first studies of these models were performed by Golay [72, 73] and after by
Bernasconi [74]. They show that the thermodynamics of the open model can
be approximated by supposing that the correlation functions Cj are uncorrelated
gaussian random variables. The Golay-Bernasconi approximation is based under
the assumption that the o; are independent variables and then so are the Cj. This
assumption is totally unjustified and obviously not true as the temperature of the
system is finite. Nevertheless the Golay-Bernasconi approximation is quite good at
high enough temperature and, overall, predicts the existence of a phase transition
at a low temperature (the transition temperature corresponds at the point where
the entropy becomes negative and it is Ts = 0.047). The same approximation can
be applied also to the periodic model [67], and the results is T ~ 0.1. This is the
static transition.

The high-temperature regime of the periodic model can be solved exactly [67].
Using the translational symmetry of the model one can rewrite the Hamiltonian in

the dual Fourier space
p/2

H=2Y B, (2.4)

P =

where B(l) are the Fourier space components

B(l) = % ]2: o exp (”Zj l ) (2.5)

and it has been used the relation
B(l) = B(-1) (2.6)

Here the bar denotes complex conjugate operation and property (2.6) follows from
the fact that o; are real function, so that half of the Fourier components can be
neglected . In the Fourier space one can shown that only certain kind of connected
diagrams contribute to the free energy allowing for a Hartree-Fock resummation of
the full high-temperature series. The exact computation of the various contributes
at each order in a small-8 expansion shows that the GB approximation is not
exact (in the sense that does no reproduce the correct coefficients) but not so bad:

basically the temperature at which the entropy obtained from the high-temperature
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resummation vanishes is again T ~ 0.1. The result for the free energy obtained
from high-temperature expansion is

—lnoorx—r4—7“2 T—ln -
f—ﬂl/o exp(—fr* — pr?)dr — Z1n(2) ~1 (2.7)

where the value of i is determined by the equation

o o0
/ 3 exp(—prt — pr?)dr = / rexp(—pBr* — ur?)dr (2.8)
0 0
The last condition correspond to the closure condition

p/2

Y (B =1 (2.9)

=1

where the mean values (...) are evaluated using the effective Hamiltonian
H{B}) = =B |Bl" = u>_|BI (2.10)
l l

The integration variables B; are complex variables and the mean values (...) are
obtained integrating over the real and imaginary part of the B;. Obviously this
expression for the free energy is not valid for the open model for which a high-

temperature resummation is still lacking.

2.4.2 Dynamical glassy transition

The static transition obtained using GB approximation and high-temperature
expansion does not coincide with the temperature at which one observes a phase
transition in computer simulations. In ref. [75], using Monte Carlo dynamics, it have
been measured the main thermodynamical observables and dynamical quantities
both in the periodic and open models. Doing annealings, starting from large
temperatures down to low 7' region, one observes only a dynamical glassy transition
at a temperature Tp where energy freezes and fluctuations vanish, not the static
transition transition described in the previous paragraph. In fact, the dynamical
transition is higher than the static transition and is related to the fact that the
system remains trapped in metastable configurations. From the thermodynamic
point of view this transition is second order: the energy and the entropy are

continuous, while the specific heat and the susceptibility experiences a jump at
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Figure 2.2: Simulations for the periodic LAM model. Energy (top left), specific heat
(top right), susceptibility (bottom left) as a function of the temperature. The system size
is p = 100 (squares) and p = 500 (crosses). The continuous line is the high-temperature
result Eq. (2.7). The dashed line is the GB approximation. Bottom right: C(ty,2ty) vs.
temperature for different values of ¢,, = 30,100,300, 1000. (from ref. [75])

the temperature Tp = 0.45 for periodic model (see Fig. (2.2)). The open model has
a completely similar behaviour and the dynamical temperature is Tp =~ 0.2.

However, the main property of the glassy transition in low autocorrelation models
regards the first order nature of this transition, which is seen in the discontinous

behaviour of the dynamical order parameter. This can be defined as

q1 = til—gnooc(tw’ 2tw) (2'11)
where
1 D
Cltw,tw +1) = ) > 0i(tw)oi(tw +1) (2.12)
=1

is the correlation function between the spins configuration at time %, and the

configuration at time ¢,, + . Above the glass transition, time homogeneity applies
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(this means that C(ty,t, + t) only depends on ¢) and the correlation function
decays very fast in time, so that one has ¢ = 0. Below the glass transition the
time behaviour of the correlation function drastically changes: time homogeneity
hypothesis is lost and aging effects start to appear, that is, the decay of correlation
function is very slow and depends on the previous history of the system. (more
concretely, it depends on the time t,, at which the spins configuration is memorized).
The system remains trapped in metastable states and it takes a very long time for
the system to overcome the barriers and explore new configurations. The aging
phenomena can be used as a precise method to locate the glass transition through
finite size scaling. Just below T¢, g1 jumps from zero to a finite value that is very
close to 1 (see again Fig. (2.2)). The order parameter ¢; is physically related to the
local order parameter associated to the metastable states and it is smaller than the
local overlap associated to the true equilibrium configurations (the static Edward-
Anderson order parameter). Because of the ¢;’s jump, the dynamical transition is

of discontinuous type. This is very reminiscent of the REM.

2.4.3 Introduction of a random model

In references [67] and [68] it has been proposed for the first time to use the replica
method to gain informations on the LAM, respectively for the periodic and open
case. A disordered model has been introduced requiring that it does have the same
high-temperature expansion of the periodic LAM. For the open case, since the high
temperature expansion has not been resummed at the present moment, it has been
required that the disorder model reproduces the high-temperature Golay-Bernasconi
approximation. In both cases, the introduction of the random model amounts to

substitute the Fourier transform of Eq. (2.5) with a generic unitary transformation
B(l) =>_ Ujo; (2.13)
J

where the U matrices are random unitary matrices. Fourier transform is one
particular unitary transformation and one try to understand what happens if one

substitute it with a random transformation. Taking into account the reality property,
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Eq. (2.6), one is lead for the periodic model, to the following random Hamiltonian

p/2
H=)Y |A@ - 1) +iA@)|* (2.14)
=1

where the A variables are defined from the spin variables o; as
P
A(l) =) Oyo; (2.15)
7j=1

and the Oy; are random orthogonal transformations over which has has to integrate.
This model can be explicitly solved by replica approach. In the replica symmetric
approximation one recovers the Hartree-Fock resummation (Eq. (2.7)) and the
temperature of the static transition T is given by the temperature at which
replica symmetric breaking happens. The explicit computation of the dynamical
temperature through replicas has been performed not for the LAM but for a simpler

model (the sine model) which is introduced in the next Section.

2.5 The Sine Model and the Random Orthogonal Model

The periodic LAM model can be seen as a fully 4-spin interaction: the 4-spin
terms are given by the square of the two-point correlation functions that appear
in Hamiltonian (2.1). The ground state of the model is not known in general.
No systematic procedure for constructing ground-state configurations is known. A
remarkable exception has been found for prime values of the system size p, such that
p = 4n + 3, where n is a natural number. In this case it is possible to exhibit an
explicit construction that is based on number theory [69]. The ground state is given
by the so-called Legendre symbols (see Chapter 4). On such particular sequence
o, Gauss has proved that the Fourier transform is invariant, namely the Fourier-

transformed variables are equal or proportional to the original spin variables:
B(l) = G(p)oy (2.16)

where G(p) = 1 for p = 4n+1 and G(p) = —i for p = 4n+ 3. By using this property,
in ref. [69], it has been defined a simple model with 2-spin interaction which has

the same ground state as the 4-spin interaction low autocorrelation model. The new
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Hamiltonian has the form

H =Y |Gp)or - BO)P (2.17)

!

This can be further simplified by noticing that the sequence of the Legendre o is
symmetric or antisymmetric around the point %(p — 1), depending on the value of
G(p). This allow to define a new model with half the number of the degree of
freedom (that, from now on, we call N) which continues to admits, for selected N
values, the Legendre symbols as ground states. This model has been called the sine

model and is given by the following Hamiltonian

1 N
H=— ”z_:l Jijoio; (2.18)

where J is the symmetric orthogonal N x N matrix

2 ) 2mij
o 2.1
Jij 2N+1sm<2N+1) (2.19)

This is the deterministic model that we are going to study in this work (another

deterministic model will be introduced in the next Section). Being simpler, it shares
the same properties of the periodic LAM. In ref. [69] it has been identified the static
transition temperature T's = 0.065 where the high-temperature entropy vanishes
(equilibrium transition), while the higher dynamical temperature is Tp = 0.134.
The corresponding disordered version of the sine model has been introduced as
well. It is the Random Orthogonal Model (ROM) defined by Hamiltonian (2.18)
where the coupling matrix is chosen at random in the set of orthogonal symmetric
matrices. The probability distribution (or integration measure) is defined by writing
J = ODO~! with D a diagonal matrix composed of +1 and O a generic orthogonal
matrix (not necessarily symmetric) whose probability distribution is defined by the
Haar measure on the orthogonal group. In ref. [69] it has also been shown, using the
replica formalism, that most of the thermodynamical properties of the sine model

are the same as those of a generic symmetric orthogonal matrix.

2.6 Another deterministic models

It has been observed [78] that the matrix J of the sine model coincides with the

imaginary part of the evolution operator V4 quantizing the elliptic dynamical system
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given by the unit Hamiltonian sympletic matrix

0 1
A= ( o ) (2.20)

acting as a Hamiltonian map over the 2-torus 7?2 [79]. The operator quantizing a
Hamiltonian map of the torus is a N x N unitary matrix, N being the inverse of
the Planck constant (the physical intuition is that the phase space has volume 1
and can accommodate at most N quantum states of volume h, so that Nh = 1).
As a consequence, in this context the thermodynamical limit N — oo is formally
equivalent to the classical limit.

This algebraic identity suggested as more natural candidates for detecting
deterministic glassy behaviour the coupling matrices defined by the quantization
of hyperbolic maps over T2. In ref. [70] it has been proposed to consider the model

defined by Hamiltonian

1N
H = —5 Z JijO'iO'j (2.21)
i,j=1
where the coupling matrix is
Jij =C Lcos(2—7r( 32 — 5 + 2)) eIN (2.22)
1] — N\/N N g J T g g .

that corresponds to the real part of the propagator Vg quantizing hyperbolic maps
of the form [80]

_ 2g 1
B= ( 42 1 2g ) (2.23)

Here Cy is an arbitrary phase factor, |Cnx| = 1. We call this model “quadratic”,
because, compared to the sine model, the coupling are the cosine of a fully quadratic
form in the lattice indexes.

While for the sine model the linearization of the mean field equations obtained
by resumming the high temperature expansion do not determine the critical
temperature [85] (see Chapter 3), in the case of the model defined by (2.21)
and (2.22) the critical temperature of a phase transition can be determined by
linearization around the largest eigenvalue of J and is value is T, ~ 0.8 [70]. The
transition is of glassy type because the mean magnetization is zero for small values

of the Edwards-Anderson parameter. We do not known whether the possibility of
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locate the transition temperature is only a mathematical chance or if there is a
deeper physical reason. By the way we observe that the dynamical system A (2.20)
is periodic and, since J is orthogonal, the eigenvalues are only +1. In case B (2.23)
the dynamical system is chaotic and, at the thermodynamical limit N — oo, the

spectrum is equidistributed in [—1, 1].
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Chapter 3

High temperature expansions
for deterministic models

3.1 Introduction

It has been suggested by Parisi et al. [82] that, unlike the random case, where the
long ranged spherical model admits a critical temperature [81], the glass transition
in deterministic spin models only exist for Ising-like variables. The numerical study
of the XY case [82] (where the spin variables are complex numbers of modulo 1) and
the analytical one for the spherical model [83] (where the spin variables are allowed
to be continuous functions subject to the constraint 3V ; 67 = N) has strengthened
this conjecture, showing that these systems are paramagnetic at all temperatures. In
this Chapter, it is actually shown that it is the discrete nature of the spin variables
in deterministic model that generate a phase transition associated with a non-trivial
thermodynamical behaviour. We are going to generalize the dichotomic Ising case,
considering the general case of spin s, so that the number of configurations available
for each spin is 2s + 1. For the sake of space, we will treat only the “quadratic”
coupling (2.22). The calculation that will be given is essentially an adaption of the

calculation of ref. [70], part of their work have, however, been simplified.

3.2 Mean field equations

Let us consider in this Section the mean field equation for the magnetizations in

the case of deterministic models with dichotomic Ising spin variable o; = £1. The
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Hamiltonian is

1N
H= —3 Z Jijoioj (3.1)
2,7=1

where the deterministic coupling can be

e A: the sine model coupling

2 . [ 2mij
— 2
Jij 2N+1sm (2N+1) (3.2)

e B: the “quadratic” model coupling

1 27
Jij = Cn—= “—(gi* —ij '2> 3.3
ij N\/NCOS(N(QZ ij +957) (3-3)
The general strategy to obtain mean field equations for the magnetizations through

high-temperature expansion is the following:

1. Compute the Helmotz free energy F(f,h;) expanding in powers of 8 and h;

the logarithm of the partition function and the resumming it.

2. Compute the Gibbs free energy ®(3,m;), passing from the variables h; to m;

using a Legendre transform

. OF
®(B,m;) = F(B,h;) + Z him; with m; = o (3.4)
i 7
3. Write down the mean field (TAP) equations for the magnetizations
extremizating (3, m;) with respect to the m;’s

=0 (3.5)

Let us start from the standard Helmotz free energy in zero external field:

e PFB) = Z exp |:§ Z Jijaiaj] (3.6)
{oi} Y

1 /+OOH dr; e 1 iv: Jo! —I—Zl cosh
= — Xp | —=— XX n T;
det'/2(2n8J) J-oo i V2m P 2p v '

ij=1 i
where we have introduced N dummy variables z; to perform the trace over spin

variables. The high-temperature expansion for SF(f3) is generated out of the
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integration of the expansion of the explncoshz. The well known diagrammatic
representation of the nth-order term is obtained [84] by drawing all diagrams with n
links, 2 < 7+ 1 < n+ 1 vertices and no external legs, whose individual contribution

is given by the following rules:
(1) for any link between two consecutive vertices [ # k a factor SJy;

(2) for any vertex with m links the cumulant u,,, i.e. the mth coefficient of the

Taylor expansion of Incosh z
(3) any diagram has to divided by its order of symmetry

The contribution of each individual diagram D at order 8" is indeed

ID|=UD)S(D)™" Y I I, Tr i=1,...,n (3.7)

273
T1,72,--Tj+1

Here j + 1 is the number of vertices, a1 +...a, =n;n—j+1=n—1...,1is the
number of loops, a; > 1 the number of links between consecutive vertices, S(D) the
symmetry factor and U(D) = ui(a1)uz(on + a2) ... uj(aj—1 + aj)ujr1(ej). Note
that rpy1 =r for j =n.

To determine the Gibbs free energy ®(8,m;), we have to put a site-dependent
magnetic field h; in the Eq. (3.6)

N

e~ AF(Bh) = m / 1:[ jz_; exp [—% i§::1 Jiglxz‘xj + ZZ: In cosh(z; + h;)

(3.8)
repeat the previous expansion (now in powers of S and h;) and perform the
Legendre transform Eq.(3.4). In standard field theory, the Legendre transform
can be formulated in diagrammatical terms. The Gibbs free energy, also called
the effective potential in particle physics, is given by the sum over connected one-
particle-irreducible diagrams. This is not true in the present case, because the
external field h; does not appear as a linear source in Eq. (3.8), instead it appears
inside the potential. A shift in z; would not simplify matters since it would introduce
a term quadratic in h; sufficient to render invalid the usual 1PI derivation. It is,
however, possible to perform the expansion of Gibbs free energy algebraically and

to give it a diagrammatic representation [86]. The weak point of this method is that
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the vertex weight and the combinatorial factors cannot be calculated systematically.
Nevertheless, since we will see that in the expansions for deterministic models only
a restricted class of diagrams survives the large- N limit, one can verify that, passing

from Helmotz to Gibbs free energy, this class of non-vanishing diagrams appears

2
Jk

Assuming self-averaging for all the contributing terms (expect for the “entropic”

with the same weight but with an extra factor of (1 — m5 ) for each vertex jg.

and “energetic” one), one can further simplify the final result by substituting m? by

q= % 2 m?
3.2.1 Case A: the sine model

For the sine model, using the orthogonality relation ), J;;J;5 = d;;, one obtains
that all diagrams are zero in the thermodynamical limit expect for the so-called
even “cactus” diagrams, which are trees made out of loops of even length joined
at the vertices and whose contribution amounts to N [85]. In other words, the
high temperature Helmotz free energy in zero external field is given by N times the
sum over the combinatorial factors and powers of 8 of all even cactus diagrams.

Evaluating this sum [85] one obtains
—BF(B) = NIn2 + NGA(8) (3.9)

where G 4(8) is the function

Ga(B) = i

J1+462 —In (H— V;Hﬂ?> - 1] (3.10)

It is important to note that this free energy is independent of the particular choice of
the orthogonal matrix J, so it is also the free energy of the ROM model. In fact the
same result can be obtained by solving the disordered ROM in the replica symmetric

approach. Furthermore G 4(f) has the following expansion in the vicinity of 8 = 0:
,82

G(B) = o + 08", (3.11)

which, by the way, coincides with what one obtains for the SK model. From the Eq.
(3.9) and (3.10) one derives the other thermodynamical quantities at zero external
field

Np

UB) = _H\/T—ZWQ (3.12)
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N2

T 142+ /1t 480
S(f) = NIn2 — %m E (1 +1/1 +4/32>] (3.14)

In particular from the expression for the entropy one can locate the static equilibrium

cB)

(3.13)

transition temperature T's ~ 0.065: it is the point where entropy vanishes. The high

temperature Gibbs free energy is given by

PE(.m) = 2 [(1 +2mi) 8 (1 +2m) * (1 _2mi) . (1 _2mi>]

2

O3 dymim; — NGA(B(1 ) (3.15)
ij

One can see that the first two terms (the “entropic” and “energetic” terms) are
the same like in the TAP free energy (1.9) for the SK model. The third is the
generalization of the Onsanger reaction term to the present case: now one can not
retain (in the thermodynamical limit) only the 32 contribution as for the SK model;
one has instead to take in account the contributions from all the higher-order terms
in the high temperature series. This is included in the function G 4(8). Applying
Eq. (3.5), the mean field equations read

m; = tanh ﬂz Jijmj + 2G4 (B(1 — q))m; (3.16)
J

where the prime denotes derivation of the function G4(z) with respect to its

argument .

3.2.2 Case B: the “quadratic” model

For the “quadratic” model, the class of diagrams contributing to the Helmotz free
energy in the thermodynamical limit is even smaller. Using the basic estimates
fulfilled by Gauss sums [90]

N .
271
Z €xp (Wg(SbSQa"'asl)) < CNl/2 (317)
51,824..0y87=1
where g is any quadratic form in the [ integers s1, s, ..., s; with integer coefficients

and C' a constant independent of g and N, one can prove [70] that the only surviving
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diagrams are the ones at even order n = 2p, having p + 1 vertices, p loops and two

links between consecutive loops. The results for the Helmotz free energy is [70]
—BF(8) = NIn2+ NGg(B) (3.18)

where G(f) is now given by

,82

Gp(B) = §14p°

(3.19)

As in the previous case, expanding to first order —SF' () we recover the SK Helmotz
free energy, and the function Gg(8) does not depend on the particular choice of
the couplings, i.e. on the value of ¢ € N. In this case one derives the following

expressions for the main thermodynamical quantities at zero external field

___ N8
_ N(@2p* -3
2 2
5(6) =—(2fﬂ52)2 +8fi/32 + N2 (3.22)

This time the high-temperature entropy is well-defined at any temperature but
we note that the specific heat becomes negative at the temperature T' ~ 1.22.
Analougsly to case A, the high temperature Gibbs free energy is given by

oy = [+ () ()

2

—g Z Jijmim; — NGp(B(1 — q)) (3.23)
i

and the mean field equations are

m; = tanh [ﬁ 3" Jijm; + 28G5 (1 - q))mi] (3.24)

J
3.3 Ising model of arbitrary spin s

Consider a system of N spins with only one component (the one along the z axis

for example) of value s, which can be an integer or an half-integer. The possible
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autostates of each spin are labelled by the quantum number s, which ranges from

—s to s in unit steps. The Hamiltonian (normalized to the spin value) is:

1 Y 1Y
H= ~952 Z Jijsisi — B Zsfhi (3.25)
ij=1 i=1
The normalization is such that the maximal interaction between two parallel spins
(1) remains constant varying the spin value. If s = 1/2 we recover (3.1). The
prefactor 1/2 is conventional and is kept to compare with previous results. The
partition function (at site-dependent magnetic field h; = 0) is the trace of the
Boltzmann factor:

ij=1

N
2(8) = Tr (exp(~BH)) = 3 exp <2ﬁ > Jijsfsi) (3.26)
{s}

Using standard formulas for gaussian integrations we can rewrite the previous

expression as a theory of N fields in zero dimension:

1 1 X 1Y
Z(B) = —/ dze - T wy + — si; 3.27

The summation over the s, is now decoupled and can be carried out; after some

algebraic manipulations, we have

Z(B) = ;/ dx exp —iXN:JTlxix-
det!/2(2rB.J) JrN 28 A= 79 T

i,j=1

N sinh[(1 + &L)z;
et )

i=1 T

To obtain the mean-field equations we resume the high temperature expansion
for the Gibbs (i.e. magnetization dependent) free energy. We start, as usual,
from the Helmholtz free energy —BF(8) = log Z(f), representing its expansion
in diagrammatic way. For convenience of the reader we remember the fundamental

steps:

e in the diagrammatic representation we have to consider all the connected
diagrams with the propagator 3J;; for any link between two consecutive

vertices
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e the vertices factors are now generalized for any vertex with m links
to the cumulant w,, (i.e. the m-th coefficient of Taylor expansion) of
sinh[(1+ 3 )z]
log{ sinh[( L )a]
e any diagram has to be divided by its order of symmetry.

In the thermodynamical limit, due to the properties of quadratic Gauss sums, it can
be shown (see [70] for a rigorous proof) that the set of diagrams contributing in order
N are just those of even order n = 2p with p + 1 vertices and p loops. Equivalently
these are all the diagrams having two vertices with two links (the extrema) and p—1
vertices with four links (all the remaining ones). At every order, ref [70] tell us that
couplings gives an amount of N277, the symmetry factor is 2P*! and we only need

to calculate the cumulants us and uy :

1s+1
—— 3.29
up = 5 — (3.29)
1 1)(2s2 +2s+1
“4:_B(S+ ) 383—|— s+1) (3.30)

Putting everything together, we can perform the summation and obtain the

Helmholtz free energy:

—BF(B) = Nlog(2s+1)+ Nf:(uQ)Q(uLL)(p*l)__

5 s(s +1)°p
— Nlog(2s+1)+2
82+ U+ G505 1 s+ D282 + 25 T 1)

= Nlog(2s+ 1)+ NG(B) (3.31)

To determine the Gibbs free energy ®(3,m;), we have to put a magnetic field h;,

repeat the previous expansion and perform the Legendre transform
®(8,mi) = F(B,hi) + Y _ him; (3.32)
%

with m; = —0F/0h;. The class of non-vanishing diagrams has the same weights as
in the h; = 0 case but with an extra factor of (1 — mfk) for each vertex iy [86]. The
hypothesis of self-averaging [85], namely m? = ¢ = limy_,o0 1/N _; m? yields the
same function G(8) in (3.31), with g replaced by B(1 — ¢). In the final expression
for ®(3, m;) we have to put by hand the usual terms given by the entropy of a set of
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non-interacting spins constrained to have magnetization m; and the “naive” mean

field energy

sin “L(m; B
“oRlpm) = -2l { e s } i m)
D) Z Jijmim; — NG(B(1 — q)) (3.33)

ij

c=(ur e [(16 1Yo (D)oo [(L))] @

is the so-called Langevin functions [87], which is typical of paramagnetism

where

in non-metallic solids. Having the expression for the Gibbs free energy, the
mean field equations of the model (that are presumably exact because of its
infinite range) are given by direct differentiation of (3.33). These would be
the analogous of TAP equations for SK model [18]. To see whether a
“glass” phase transition exists we look for solutions of mean-field equations different
from the trivial one ¢ = 0. For T near T, the magnetizations m; and also the
eigenvectors corresponding to the largest eigenvalue of J;; are small so we can
linearize in m;. Using

3s 9 s(1+2s+2s?
the linearized equations read

3s m
s+1

With some tedious algebra one can rewrite the previous equation as

L5 (m;) =

+ o(m}) (3.35)

— Bm; + QﬁG'(ﬁ)mz =0 (3.36)

0 = B[(1+ )31+ 2s+25%)% - B[3s(1 + 5)(1 + 25 + 25°)7]
+B%1120s3 (1 + 5)2(1 + 25 + 25?)] — £2[40s* (1 + 5)(14 + 285 + 235%)]
+6[3600s°)(1 + s) — 10800s” (3.37)

The critical temperature 7T, is given by the zeros of (3.37). For fixed value of s we
numerically solved it; in Fig. (3.1) we plot the critical inverse temperature (. versus
the spin value s. The numerical fit is consistent with the following law:

10 3

'BCN?_S—I—I

(3.38)
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The inverse critical temperature grows with an inverse power law for increasing s,

approaching a constant value for s — oco.

4.0

0.0 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L
0.0 100 200 30.0 40.0 500 600 700 80.0 90.0 100.0

S

Figure 3.1: Plot of the inverse critical temperature (. versus the spin value s. The solid
line is the best numerical fit, (Eq. (3.38)).

3.4 Conclusions

By studying the dependence of the critical temperature in the “quadratic” model
for the case of Ising spin values of arbitrary spin value, we have confirmed that
discreteness of spin variable allow the existence of a phase transition in deterministic
models. Its nature is "glassy” (in the sense that the pure magnetization states at zero

temperature are neither ferromagnetic nor antiferromagnetic) by the same argument
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of [70]: at T' = 0 the averaged magnetization is zero because it is proved that

N
iy 2 ki =0

if u; are the components of any normalized eigenvector of the matrix J corresponding
to the eigenvalue 1. Even though the ground state is degenerate, none of the
magnetization states generates long-range order. One would ask if the discreteness
of spin variable is a necessary condition to a glass state exist. To obtain this
conclusion one would have to rigorously shown that there is no transition in models

with continuous symmetry (like the XY or Heisenberg models). This point goes

beyond the aims of this work and will be discussed elsewhere.
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Chapter 4

Statistics of energy levels and
zero temperature dynamics for
the Sine model

4.1 Introduction

Metastables states in infinite-range disordered spin-glasses have been extensively
studied, both in the SK model [24, 25, 26] and in p-spin interaction spin-glasses
[88]. Here we deal with the same question in deterministic models. By probabilistic
arguments we will obtain, for the sine model a lower bound on the number of 1-spin-
flip stable states, which increases exponentially with the size of the system. Hence
this deterministic model exhibits the main feature of glassy behaviour.

The outline of this Chapter is the following. In Section (4.2) we calculate the
number of metastable states at zero temperature for the Random Orthogonal Model,
which is the disordered model associated to the sine model. In Section (4.3) we start
our analysis on the sine model by studying the limiting distribution of the rescaled
energy density, showing that it gets d-distributed in the thermodynamic limit. This
property, which holds for the Curie-Weiss case, is an indication of the mean-field
nature of the model. In Section (4.4) we rigorously show that Legendre symbols are
ground state configurations for the sine model when N is odd such that p = 2N +1
is a prime of the form 4m + 3. We deal with the state space of the system in
Section (4.5), computing explicitly (for N prime analytically, for other values of N

numerically) the distribution of the energy levels by flipping one spin at a time;
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among other things we show that there can be a large number of states with almost
zero overlap with the ground state but very close in energy to it. In Section (4.6) we
relate metastable states to zero temperature dynamics and we numerically compute
them. In Section (4.7) we derive the main result, that is a lower exponential bound
for the number of metastable states at temperature 7' = 0. Finally, some numerical
checks on the approximation that is made in the analytical calculation are presented

in Section (4.8) and the concluding remarks are drawed in the last Section (4.9)

4.2 Metastable states in the Random Orthogonal model

We want to study the metastable states at temperature 7' = 0 in the Random
Orthogoanl Model (ROM). As a by-produce we will obtain also the result for the
SK model. The number of metastable state in the ROM model has been computed
in ref. [85], calculating the number of solutions of the mean field equations through
replicas. Here we rederive the result at zero temperature in a straightforward way.
On the matrices of the random orthogonal group the following identity (which is

useful to solve the model through replicas) holds in the large N limit

/’DJexp TrJ2—A] = exp [NTrG (%)] (4.1)

where Tr means the sum of diagonal elements, A is a symmetric matrix of finite

rank and G(z) is given by

G(z) = % [\/ 1+ 422 — log (%—W) - 1] (4.2)

The fundamental formula (4.1) also applies to the case of random matrix with
gaussian elements (SK model) with Gsk(z) given by

1‘2

Gsk(z) = 1 (4.3)

Metastable states at zero temperature coincides with 1-flip stable states,
i.e. configurations whose energy cannot be decreased by flipping any spin. The
number of states subject to the stability condition against single spin flips for a

fixed disorder realization J is given by

N=> /0 - [Ildx; 6(xi = > Jijoio;)] (4.4)
{0} i j
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where as usual the bar denotes the average over disorder. Since we expect an
exponential increase of the number of 1-flip stable states, the average over the bond
distribution should be performed on the logarithm of this number, which is the
extensive quantity, rather than on the number itself. This would lead us back to
introducing replicas. However it turn out that for most of the states (actually for
all states with energy € above a critical value €.) the two computations coincide.

Introducing integral representations for the ¢ functions

™

(A —Xo) = 2i / e~ 1A=20) 4o (4.5)

we have

M=% [TTI@n) [T T e Srdiexp(c S Tyoiosr 4

= Z H( i ) H( o )e v eXp(Z z]o'zo']¢2) ( -6)
@370 Btk i

We now do the simple change of variable ¢; — ¢;0; whose Jacobian is Jac = []; o;:

N=2 /oOo H(d/\i ) /_o:o Jac H(dg;’:)eiizi Ai0i%iexp(i Y Jijdio;) (4.7)

{o} 1]

Defining A;; = i(¢io; + ¢j0i) we have i 3, . Jijoi0; = tr(JA/2) and we can perform
the average over disorder using formula (4.1). To this end we need the eigenvalues
of A; it can be proved that the spectrum of A is composed by all zeros expect two

eigenvalues iu and ¢u_ where

pt = (p,0) £[¢lllo|l (4.8)
We obtain
_ * . 00 % *iz.)\id)iai N[G(iu+/N)+G(ip— /N)]
e {%;/O 1;[(% )/—oo Jacl;[(zn)e e (4.9)

We make again the elementary substitution ¢; — ¢;0; yielding puy /N — v £ /w
withv =1/NY,; ¢; and w = 1/N ¥, ¢?:

—E Ild I[d¢z _ZE: e iv w o
N { }/0 . ( AZ )/ [Jac]2 . (—2 )e i)\z(bzeN[G( ( +\/>))+G( ( \/»))]
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Now the expression is independent of ¢ and the sum over spin configurations can be

done: 3,3 = 2". Note moreover that [Jac]* = 1 so that
1 o o —i i Pi i(v+yw i(v—y/w
W= e [T [ Tlagge S vosnvaniatiean oy

Now we want to perform the integration over the ;. To this end we introduce step

functions to extend the integrals over the whole space.

- 00N dA / dibi Vet 20 Aidi NG+ /) +Cliv—/))]
N = e [ TH00 ax1 [ Tliage S
(4.12)
Introducing integral representations for the step functions (from now on it is

understood that the limit e — 0 has to be taken)

() = —— / © (4.13)

211 J—oo k — 1€

we have

G(i(v+vw))+G(i(v—vw))]

/Hk_ze/ ISt

Now we recognize in the preceding expression the delta integral representation (4.5)
so that

N / ( bi ) NG (vt vw))+G(i(v—v/w))] (4.15)

i qS, — 1€
The last step is to perform the integral over ¢; using the saddle point method. In

order to do that we introduce again delta functions:

[ et =N S [ dwstw 1N S a)
/oo H ( 1 dg; ) G(i(v+v/w))+G(i(v—y/w))] (4.16)

oo 1T Py — i€

and, using again the integral representation (4.5),

N o= L1 / * iz / * dy / = / % dw el twy) NIG+y/B)+Gli(v—V/))]
(27T)2 —00 —00
o0 1 exp(— ZM—ZN) .
/ 1:[ (Zﬂ' ¢ _ Z€ d¢Z (4.17)
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Rescaling /N — z and y/N — y and noticing that the integrals over ¢; are now

decoupled, we obtain
2 oo - o .
M= <E) / dx/ dy/ d”/ dw NTHUY+ G+ G (v vw)]
27 oo oo - .

( / < 1 exp (—igw — ig’y) d¢) 3 (4.18)

oo T ¢ — i€

The last integral can be directly evaluated completing the square in the exponential

and using the identity

2 [ 1 —t2
erfe(-iz) = €? / 1 ex(=1) (4.19)

ol t—2z

where erfc(z) is the complementary error function. The final result is then obtained

by applying the saddle-point method

N =~ max exp{ N |G(v+ vw) + Gv — vw) — vz — wy + Inerfe | ———
(x| p{ (v +Vw) + G(v — V) y ( NG
(4.20)
Solving numerically the saddle point equations one finds
N =~ exp(0.28N) (4.21)

For the SK model, using the function Ggk(z) of Eq. (4.3) instead of G(z) one
obtain the well known result [24, 25, 26] Nsx ~ exp(0.199N).

4.3 The limiting distribution of the rescaled energy
levels

Before starting the analysis of metastable states in the sine model we study the
distribution of energy levels. The basic setup is a probability space (Xn, Fn,P n)-
The sample space ¥y is the configuration space, i.e. £y = {—1,1}" whose elements
are the sequences o = (01,---,0n) with o; = £1; Fy is the finite algebra with 22"
elements, and the a priori (or infinite-temperature) probability measure P y is given
by

P (C) = ziN 1 (4.22)

oceC
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The Hamiltonian is the function on X defined as

1 1
H(U):_Ezjxyo'way:—§<(]0',0'> (4.23)
xy

where J = (Jy) is a symmetric real orthogonal N x N matrix given from the outset.
Although many of the results presented here will hold for a generic symmetric matrix
of the Random Orthogonal Matrices Group, in what follows we shall examine the

particular example of sine model (2.19), that we report again for completeness:

2 2wy
= . 4.24
which satisfies (we assume N odd) !
N N
JJT=1d and Y Jpo=)» Ji =1 (4.25)
=1 =1

The knowledge of the eigenvalues of J imposes simple bounds on the energy
of any spin configuration. Indeed a state vector ¢ can be decomposed into its
projections on the various orthogonal eigenspaces relatives to different eigenvalues.

Here, due to orthogonality, the possible eigenvalues are +1, —1 so that

D <H@) <.

5 (4.26)

Let us consider the rescaled and shifted Hamiltonian (representing the energy per

site, or energy density of the model, plus the ‘zero point’ energy 1/2)

H(o) 1
~tg (4.27)

h(o) =

which takes values in [0,1]. We shall show that in the limit N — oo the energy
density h gets d-distributed at z = 1/2. We point out that this property can
be immediately proved for the Curie-Weiss model, thus indicating a mean field
behaviour of the present model in the thermodynamic limit. To this end consider

the partition function Zy at inverse temperature 3:

ZnB) = Y exp(—BH(0)) =2V E (e PH), (4.28)
oEYX N

! One might also consider interaction matrices with zero diagonal terms, recovering orthogonality
in large N limit. This amounts to put the average energy equal to zero (instead of —1/2) and may
be convenient for particular purposes
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where E y denotes the expectation wrt P », and note that the characteristic function

of h can be written as
a2 ZNOUN)

E n(e™) = SN (4.29)

This expression will prove useful to compute the limiting expression of the
characteristic function of the energy density h without knowing the expression
of all its moments. To see this, we first decouple the spins as follows: let B be
an orthogonal matrix such that BTJB = D with D = diag(dy,...,dy). Since
det J #0 we haved; #0,i=1,...,N, and det J~! :Hid;l. Let v € R" be such
that o = Bu.We have < Jo,0 >=< Bu, JBu >=< u, Du >, and thus

A N A,
exp(ﬁ<JU,a >) = Hexp(ﬁdiui)
i=1
S (e B S
= L o ) o P 9 N 1Lq
1 1 [ A s
= W/RNexp<—§<$,x>+ N<u,D/m>) dz

1
_ det J2 1 -1 Y
= 7(27”\)]\7/2 /RN exp (-5 <y,JTy>+ <o, ﬁ >) dy,

which, together with (4.23), (4.28) and (4.29) yields

d.’l?i

N——

1
_ .y detJ3 1 _ Yi
e = e L S g ) g
N =e @2 Jy O\ 2y < +; ogcosh 7 ) dy

(4.30)
(As usual, the square roots appearing in the above formulas are only apparently
ill defined: they disappear in the expansion because it contains only the even
terms). The above integral can be evaluated by means of standard high-temperature
expansion techniques which turn out to be considerably simpler if one assumes that
> Jii = 0 (see [85]). As we have already noted, this assumption amounts to fix at
zero the mean value of the energy.Also, the division by N of the argument of the
partition function leads to a convergence domain which is increasing as N itself. In

—Ah)

this way, the asymptotic expression (for N — o0) of E y(e can be written in

the form
En(e M) = e V2eNOWN (14 0(N ) (4.31)
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where the function G(z) is an effective specific free energy. For the symmetric
orthogonal interaction matrices and in particular for the sine model (4.24) one finds
[85]:

1 1+ 1+ 4z2
G(z) = 1 V14422 — log (%) - 1] . (4.32)
This yields
NG(\/N) A2 A3
e :1+W+O<W>' (4.33)
Summarizing, we have found that for any fixed A,
1
E n(e™) = e/2 [1 +0 (N)] ., N - oo (4.34)

Using a well known theorem of probability theory [91] which says that a distribution
function Gy converges weakly to G if and only if on(A) — ¢(A) for any A
(where pn(A) and ¢(\) are the characteristic fcts of Gy and G respectively) and
noting that ¢()\) = e /2 is the characteristic function of the distribution function

G(z) = X[L,00)7 W€ then conclude that the distribution of A tends to X1 00)"

4.4 Legendre symbols as ground states in the sine model

As already noted in Chapter 2, for special values of N the ground state, i.e. the
configuration ¢® € ¥y which minimizes the energy, can be explicitly constructed.
Indeed, for N odd such that p = 2N + 1 is prime of the form 4m + 3, where m is an

integer, let 0¥ be the state given by the sequence of Legendre symbols, i.e.

o_ [T\ _ } +1, if z = k?(modp),
2= )‘{ -1, if 2 # k2(modp), (43

with £ = 1,2,...,p — 1. Then, using basic results of number theory on the Gauss
sums (see, for example, ref. [90]), we can prove that 0¥ is an eigenvector of J with
eigenvalue 1 and so the value of the Hamiltonian on Legendre symbols is the lowest

possible value
1 1 N
H(0%) = -2 < Jo% o >= —5 < %00 >= = (4.36)
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In fact we have:

(JUO)y

w25 6)

=1

2 X1 ( [z’?mcy] (:1:) [—i27r:1:y
— Z — | exp — | —exp
VP i P P P
changing = — —z in the second summation
2 —1 2 _
) (1) 5 of22)(3)

p p) =y p p

using multiplicativity of Legendre symbols:

)

1 N
% |:Z eXp

=1

~ N
|
=
N———
[l
Ve
@“_.
N——
VN
S8
N——

and the fact that (%) = —1if p = 3(mod4
~1

SlEm 0 )

using the periodicity of Legendre’ symbols : (m) = (f)

p p
1 iexp z'27r:1:y] (g) N % exp [i?mcy] (E)
WP |2 p P/ 2Nt p p

being (%) = 0 by definition

)

using the separability for Gauss sums

v () 2= 51 6)

r=1

1 p

Z‘/ﬁ =1

12T XY
p

exp [

evaluating the Gauss sum

72



= )
which is the desired property. A typical ground state for p prime of the form 4m + 3
reflects the well known random distribution of the Legendre symbols (see Fig. (4.1),
where a pair of ground states are shown for two different N values). No structure is

present at any scale. Nevertheless, denoting by m® the specific magnetization of the

ground state, i.e.
1 Y T
0 __ } : 0 _ E :
m- = N . U.CE = N$:1 (;) , (437)

one observes that it tends to be a positive function of N, fluctuating around the
value 1/4/N. To let the reader better appreciate this fact we plot in Fig. (4.2) the

total magnetization Nm® versus N.

o o

Figure 4.1: Ground state for N = 33 and N = 113.

4.5 Flipping spins from the ground state and statistics
of levels

From now on we will restrict to p = 2N + 1 prime, with p = 3 (mod4). We point
out that this set has measure zero as a subset of the natural numbers. However, we
have strong numerical evidence that some relevant properties that we are going to
discuss hereafter, such as the behaviour of m°(N), the statistics of energy levels and
the number of metastable states are somehow generic in V.

Let Qs C X n be the subspace consisting of the (];] ) configurations obtained

0

by starting from the ground state ¢° described above and flipping exactly s
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Figure 4.2: Total magnetization Nm° of the ground state versus N, 2N + 1 = 4m + 3
prime. The continuous curve is v/ N.

different spins. Each point of Q4 can thus be identified with a s-dimensional vector
7€ {1,...,N}* of the form 7 = (z1,...,,), with z; # z; for i # j, which specifies
the positions of the flipped spins along the chain of length N. We then define the
‘flipping’ map L, : ¥y — X as:

_ —Og, TET,
(LTU);U - { Uma T ¢ T. (438)
In this way we can write
Q, = {L,0°},. (4.39)

The correspondence 7 — o given by ¢ = L,¢? is plainly one-to-one. Therefore in
the sequel we shall freely identify a state 0 = L,¢" with the vector 7. Alternatively,
we can proceed as follows. Define the overlap ¢(o) of a given configuration o € X

with respect to the ground state o° as:
1N
o) = = 3 020, (4.40)
=1
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so that q(c’) = 1. Then
Q={ceIy:qo)=1- 2%} (4.41)

The following straightforward calculation yields the energy values on the space €2;:
using the definition of L,, the symmetry of J and the fact that the ground state o

is an eigenvector of J to the eigenvalue 1 we have:

1 1
H(LTUO) = -3 z Z Jzyagag + 3 Z Z nyogag

TET YET TET ydr

1 1
+§ Z Z nyagag —3 Z Z Jwyagag

cdT YET xédTy¢T
_ 1 al J 0_0 9 J 00
LS et 2 Tl
T,y=1 TET yd¢r
N

N
D 3) D) ) I

TET y=1 TET YET
N

= -3 + 22(02)2 — 22 ZJwyagag

TET TET YET

N
= —5 +25-23 > Jnoyoy (4.42)
TET YET

Notice that for the Ising mean-field interaction: Jgy = 1/N, one finds

N 2 N 25\ 2
H(Lro") = 5 +2s - 2‘% =-3 (1 - ﬁ‘(’) . (4.43)

It is now possible to study the distribution of the energy levels on the individual
subspaces ()5, where s = 0,1,..., N. Let p; be the probability distribution restricted
on (1, i.e.
-1
N
ps(C) = ( ) oo, (4.44)
§ oceCNg

and let E ; denote the expectation wrt ps. The n-th moment of the energy H on the

subspace (2, is given by

-1
Eu(HY) = [ H'(0)dpi(0) = (N ) > H(L,o"), (4.45)
s TEQ
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so that the n-th moment E y(H") of the energy on the whole configuration space

ZN is
N
Ey(H") = /E H"(0) dP y(0) = 2LN 3 @7) E,(H™). (4.46)
N s=0

A tedious but straightforward calculation (see Appendix A) yields the following

expressions for the first two s-moments:

s\ 2
B ,(H) = _% (1 - %) , (4.47)
s(s — 52 —2s
Var,(H) = B (1) - (B.(m)) = “C=TE Ry
and consequently ) N1
En(H) = —g Vary (H) = — (4.49)

These results indicate that, at variance with the ferromagnetic case where the
energy is constant on each subspace (s, here there is a significant overlap between
the distributions (for different s values) of the energy when restricted to Q5. In
particular, from the expression of o2 we see that there can be a large number of
states having small overlap with the ground state but nevertheless with energy very
close to —N/2. For example we have Vars(H)|,—n/2 =~ N/2, indicating that the
energy restricted to the subspace {2/ may fluctuate over the whole energy range.
This simple phenomenon is intimately related to the existence of metastable states
and it will prove crucial in the understanding of the zero temperature dynamics,
as discussed below. Fig. (4.3) shows the distributions of the energy restricted to
various subspaces ;. Another quantity of interest is the specific magnetization

m(co) of an arbitrary state o € X, given by:

1
m(o) = N Z Oz, (4.50)
=1
In particular, given 7 = (z1,...,z5), we have
2
m(Lyo°) =m(r) = m® — N Z (E) . (4.51)
TET p

Clearly,
1

<N)z(z(p))<jv>z(i)(p)m 052
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Figure 4.3: Distributions of the energy over the subspaces Q,. The size of the system is
N =23 and s = 3,4,...,11 from left to right. The cases s = 1 and s = 2 behave in a similar
way, but they are not plotted because of the small number of sample points for this lattice
size N.

i.e.

Z m(r) = m° <1 - 2i> . (4.53)

N TEN, N
S

Moreover, we show in the Appendix B that

4s(N — s 4s(s — 1 Pz
Var, (m) — N3(( — 1)) + NSE - i) 5 (_) dn (), (4.54)

where dy(z) is the integer valued function giving the number of elements u €
{1,...,N} such that u='z € {1,..., N} (where u~! denotes the inverse mod p of
u). As will be discussed in Appendix B, dy(z) takes values around p/4 with rather
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small fluctuations. Since >-F_, (%) = 0, the last term in (4.54) can be considered

as a small correction to the constant value 4s(N — s)/N3(N — 1).

4.6 Zero temperature dynamics and metastable states.

We first introduce the following discrete 1—flip dynamics, given by:

— Lw(t) U(t)a if H(LwO') < H(O’),
olt+1) = { a(t), otherwise,

where, for each t, w(t) is chosen randomly in {1,..., N} with uniform distribution.
Choosing an initial condition ¢(0) at random with respect to P y, one obtains a
random orbit {¢(0),(1),...,0(£)} for any realization {w(t)}1<¢<¢ of length £. As a
consequence of the previous analysis, we might encounter the following two situations

which effect the convergence of the dynamics to the ground state.

e On one hand, it may happen that starting from o(0) one reaches after ¢
iterations a state o (t) € €, of the form o(t) = L,0° for some 7 = (z1,..., ),
such that H(L,0%) < H(L,L,0°) for any w € {z1,..., s}

e On the other hand one can reach o(t) € Q, such that for some w € {1,...,N},
Lyo € Q41 and H(L,0(t)) < H(o(t)). Namely, in order to decrease the

energy, one must decrease the overlap with the ground state.

Due to the above observations, the overlap function g(o(t)) between o(t) and the
ground state is not in general monotonically non-decreasing along a given random
orbit (this at variance with the Ising mean field model). In particular there might
be metastable states [89]. Given w € {1,..., N}, we shall say that a configuration
o € XN is w-stable if

H(L,o0) > H(o). (4.55)

We say that o is 1-flip stable if it is w-stable Vw € {1,...,N}. Analougsly a
configuration o is said to be k-flip stable if its energy cannot be decreased by flipping
any subset of k (or less than k) spins. It has been recently recognized [66] that
generally for finite dimensional systems the zero temperature metastable states (i.e.
solutions of TAP equations) coincide with oo-flip stable configurations. However

in mean-field models with infinite connectivity, like SK, due to the vanishing of
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couplings in the thermodynamical limit, there is a degeneracy between k-flip stable
for every finite k. Namely, in the limit N — oo, any k-flip stable configuration is also
k + 1-flip stable. In the present case the same argument of ref. [66] can be applied
(since the couplings J;; = O(1/v/N)) so that metastable states can be studied just
by considering 1-flip stable states. We denote here by n(N) the total number of such
metastable states as a function of N.

The main goal of this Chapter is to give an estimate of the number of metastable
states for any given N. To this end we first performed some numerical investigations.
For N < 30 we performed an exact enumeration of all configurations, whereas for
larger N we run the zero temperature dynamics described above (“deep quench”) for
a number of realizations {w(t)} as large as 10® for bigger sizes, keeping track of the
metastable states. As shown in Fig. (4.4), the growth of these states is exponential

for generic values of the V. The best numerical fit yields
n(N) =~ C - 228N, (4.56)

We remark that the same result has been obtained for the Random Orthogonal
Model in Section (4.2) (see also [85]). The number of metastable states appears as a
self-averaging property, that is shared by generic realization of a random orthogonal

matrix.

4.7 Analytical estimate of the number of metastable
states

We now proceed to give a partial justification of the numerical result of the previous
Section by means of probabilistic arguments. First of all, we observe that from
(4.42) one readily obtains that

H(L,0) = H(0) + 2 ) Jow 04 0w, (4.57)
THW

so that o is w-stable if and only if
(Jo), 0w > Juw- (4.58)
Summing over w and using (4.25) we see that if o is 1-flip stable then

< Jo,o>> 1. (4.59)
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n(N)

n 1 n 1 n 1 n 1 n 1
0.0 10.0 20.0 30.0 40.0 50.0
N

Figure 4.4: The number of metastable states n(NN) for N. The line represents the best
fit n(N) ~ e*¥ with A = 0.28 for values of N such that p = 2N + 1 is a prime of the form
4m + 3 (filled points). Other points are for generic integer N.

Recalling the expression (4.23) of the Hamiltonian we see that a necessary condition
for o € ¥y to be 1-flip stable is that

H(o) < E n(H) = —% - (4.60)

Let now 7 = (z1,...,25) and w € {1,...,N} be given. Using (4.57) and

Jo¥ = o9 it is easy to see that if w ¢ 7 (i.e. Lyo € Qs41)

H(L,0) = H(o) + 2 (1 —Jow =2 Ty 0y og> ,

TET
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whereas, if w € 7 (i.e. L,0 € Q4_1), we have

H(L,0) = H(o) — 2 <1+wa—22J o a").

TET
If we define
Z Jpw 0200, (4.61)
TET

0

we then see that a configuration o = L;o" is w-stable if and only if

hir,w) < (1 —Juw), ifwér,

N[

(4.62)

h(r,w) > (14 Juw), ifwer.
We now dwell upon the problem of characterizing the behaviour of the function
h(7,w) so as the condition (4.62) can be effectively used to estimate the number of

metastable states. Let us rewrite h(T,w) in the form

== Z £a(w (4.63)

mET

o= () 2

Now, having fixed 7 and = € 7, we can view the function &,(w) defined in (4.64) as

where

(4.64)

a random variable uniformly distributed on {1,..., N} and taking values in [—1,1].

Its mean and variance are easily computed:

B(e) = ~ gj (ﬂ) sin [2”‘”] _ VP (4.65)

N/=\p P

and, using (4.25),

Var(¢) = i [27“”] 2= % (1 - %) . (4.66)

Here we want to study the behaviour of the sum 7(7,w) := ¥, {x(w). We remark
that this sum, and thus h(7,w) = 27(7,w)/,/p, has to be regarded as a r.v. defined

on the product of two probability spaces: for each fixed 7, it is the sum of the

identically distributed random variables £, (w) on the space {1,..., N} with uniform

distribution (this comes from the very definition of the zero temperature dynamics);
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on the other hand, for each fixed w, it can be regarded as a r.v. on Q, viewed as
a probability space endowed with the distribution p,. Its mean is given by (recall

that the symbol E ; denotes the expectation wrt py):

B.() = (N> > zmw):(f)_li(s_l) (@) (@.6)

7——(11, ’g;s) TET =1
= = Z £o(w) = i

which does not depend on w and equals s times u;. Along the same lines one shows
that

Var, () = ;g(y—%). (4.68)

Notice that unlike the means, here we have Varg(n) # s - Var(¢). This discrepancy
comes from the fact that, for any fixed w, the sequence &;,,&5,,-- ., &z, is a sequence
of distinct (and ordered) elements so that by no means we can view 7 as a sum
of independent and identically distributed objects. Nonetheless, also supported by
strong numerical evidence (see Fig. 4.5), we claim that a version of the central limit

theorem is applicable so that when N — oo, s — oo with s/N — A, we have

n—Esn 1 (B
S e

Assuming the validity of (4.69), performing the change of variables y = (z — X)/,/7,
with v = A(1 — A), and setting a = A + ay/7, b = A + 5,/7, we thus obtain an

asymptotic gaussian distribution for h(-,w):

ps (a < h(r,w) < e~ (@227 g (4.70)

\/27r

Note that the r.h.s. does not depend on w. One can actually say more: for any &, w €
{1,...,N} we have h(& '7,0w) = h(7,w). Therefore the set of values of h(-,w) on
Q; does not depend on the choice of w, i.e. {h(7,w)}, cq. = {A(7',w')},1cq,, for all

w, w'.
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Figure 4.5: Distribution of the function h(r,w) for a fixed w € {1,..., N} and 7 varying
in Q,. Here N = 23 and s = 3 (left) and s = 11 (right). The solid line is the gaussian

distribution in the r.h.s. of (4.70).
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Having fixed an order for the lattice points (w1,...,wn), wj # wk, we now consider

the following quantities:
ms,n(wk) = ps ({0 € Qs + H(Ly,0) > H(0)}), (4.71)
the ps-probability that a randomly chosen state o € €}, is wg-stable,

T N(Wrt1| w1, ..., wk) = ps ({0 €Qy : H(Ly,,,0) > H(o)
| H(Ly;0) > H(0), wj = w1,...wi }) ,(472)

the conditional ps-probability that a randomly chosen state o € €25 is wgy1-stable

given that it is wj;-stable for j =1,...,k, and
msN =ps ({0 € Qs 1 H(Lyo) > H(0), w=wi,...,wn}), (4.73)

the ps-probability that a randomly chosen state o € €, is 1-flip stable (i.e. stable
for all possible flipping). Notice that by condition (4.62) the last quantity can be

written as
-1 N-—s
N 2 14 Jyyu, 1— Jy,
ron = I (h(T, £;) > 1 T x) I ¢ (h,(T, y) < 7%%) .
s : 2 , 2
(1,0 ms)=7 3=1 j=1
(Y1yems yN_S)—-rc
(4.74)
The three quantities introduced above are related by the following identity:
e N = Tg(wi) » me(walwr) « ms(ws|wi, wa) -+ Te(wn|wi, . - - ,wN—1) (4.75)
and the total number of 1-flip stable states in 3 is, by definition,
N
N
n(N) = Z < s)ﬂ's’N. (4.76)
s=0

We shall study the quantity n(N) in the thermodynamic limit: N — oo, s — o0,
with s/N — Aand 0 < X < 1. In this regime we write 7, y = 7y and apply Stirling’s

formula to obtain

N eNF(\)
(s) ~ N Y with F(A) = —AlogA — (1 — X)log (1 —X). (4.77)
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Note that F()) is concave and symmetric around A = 1/2; with F(1/2) =log2. In

this way we get for N large and s ~ AN with X\ ranging in the unit interval,

nUV)zlélw/igx%gzjs-mq)PV(PKA)+]Oi:A>]dA. (4.78)

It thus remains to estimate the probability m). Let us consider first the

unconditioned probability (4.71). According to (4.62) and the total probability
14+ J,
mon(Wr) = P (h(T,wk) > = o

N 9 TBwk)

+ (1 - %) Ds (h(T, wg) < % TZ wk) . (4.79)

formula we have:

Here s/N and 1 — s/N are the probabilities that 7 5 wy and 7 F wy, respectively.

We can easily compute the conditional expectations

E(h|7’ = wk) = <N__11> % Z Zém(wk) = ]f[__ll B (}9\7_—]\:{

§ TOWg TET

)hm,%w
and

—1
Ewh¥w0=<N;4> 5%}:}:@@m:3ﬁ§TQ—J@%). (4.81)
THwg TET

In a similar way one can compute the variances v, (wy) and y_(wy) conditioned to
the events {7 3 wi} and {7 # wi}. For N large and s ~ AN, retaining only terms
O(1), one gets

E(hlr 2 wp) ~E(hlr Fwp) = A, y(wp) 2 ya(wp) >y =A1-A).  (4.82)

Moreover in the thermodynamic limit specified above we write 7y v (wy) = 7 (wg)

and argue from (4.70) the following approximate expression for my(wg):

A a2 (1—=X) (Y2 _ .\
~ N (a=X)?%/27 4 ____/ (2-X?2/27 4
mx(wg) T /1/2 e z + 2y | e z
1, /1 53— A
= §+(§—)\>erf<\/2_’y> (4.83)
where we have denoted the error function by
erf(z) = 2 /Z e dz (4.84)
7= Jo . .
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It is not difficult to check that the r.h.s. of (4.83) is convex and symmetric around
A = 1/2, where it reaches its minimum value equal to 1/2.

Let us now come to msn. In principle this quantity is to be computed
by specifying the whole set of constraints embodied in (4.74) or, which is the
same, by computing the conditional probabilities appearing in Eq.(4.75). However,
this appears to be a difficult task. A first approach which drastically simplifies
this task is to forget about the constraints implied by (4.74) and assume that

(in the thermodynamic limit) the various w-stability conditions become mutually

independent, that is m)(wg41|wi,--.,wk) = Ta(wgy1), forall k = 1,...,N — 1, so
that
N
™™ = H 7r)\(wk). (4.85)
k=1

Recalling Eq. (4.78) and (4.83), one is led to the following expression for n(N):

/1/%“_ exp NG1 )d,\ (4.86)

G\ = F(\) + log% + (% - )\) erf (%;2_3) (4.87)

We show the shape of the the function G1()) in Fig. (4.6).

where

0. 14
0.12}

0.1;
0. 08;
0. 06;
0.04
0. 02

0.2 0.4 0.6 0.8 1

Figure 4.6: The function G;(\) of equation (4.87) for A € [0, 1].
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Evaluating the integral (4.86) with the saddle-point method one gets
n(N) ~ C %14V, (4.88)

Notice that the exponent is the half of what is observed numerically (cfr (4.56)). In
the following Section we shall argue that (4.88) is indeed an estimate from below of

the actual number of metastable states.

4.8 Numerical checks of the analytical estimate

The above discussion has been able to reproduce the exponential growth of the
number of metastable states with the size of the system. To understand the
discrepancy between the estimated exponent and the one measured numerically one
should note that the nature of the interaction makes the conditional probabilities
play a major role in the asymptotic of the number of metastable states. To be
more precise, our approximation which assumes mutually independent individual
w-stability events, i.e. m\(wgi1|wi,---,wk) =~ wx(wgs1), is actually reasonable
only for small value of k (this can be checked, for example, calculating the
correlation functions). As numerical results shows, for large values of k the specific
form of the interactions make these events strongly dependent. In Fig. (4.7)
we show the function P(k) providing the average of my(wgi1|wi,-..,wk) over a
large sample of different permutations (wsi,...,wy) of the lattice points. The
conditional probabilities P(k) grow monotonically, almost linearly, from the initial
(unconditioned) value up to a number close to 1. In other words, requiring that
a large number k of spins produce an w-stable state increases substantially the
probability of doing the same for the remaining spins.

Another way of understanding the constructive effect of the correlations is the
following. Consider again the function h(7,w). Having fixed wi1, we have already
noticed that for s and N large enough the values of h(7,wiy1) with 7 € Qg are
approximately distributed according to a gaussian probability density with mean
A = s/N and variance v = A(1 — )), regardless of the particular value of wy1.
Thus, in particular, the same distribution are expected to arise if one considers the
values of h(7,wy1) constrained to the subsets of configurations such that wg,1 € T,

or wigy1 ¢ 7. On the other hand, if one picks wi,wy,...,wy with w; # wiy,
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Figure 4.7: P(k) versus k, for N = 15(circle),21(square),23(diamonds) and s =
[N/2]. The conditional probabilities have been averaged over a sample of 10000 choices
of (wl, cee ,wN).

j = 1,...,k, and computes numerically the two conditional distributions of the
values of h(7T,wgy1) given wi-stability, ... , wg-stability (again with the constraints
Wk4+1 € T OF w1 ¢ 7), one finds that their means move to opposite directions,
thus increasing the probability of wg1-stability (see (4.79)). This is shown in Fig.
(4.8), where a system of size N = 21 and s = 10 is considered. The two central
distributions correspond to the unconditioned cases, namely the values of h(7,w)
for 7 € Qq9 with the only constraints w € 7 or w ¢ 7, respectively. Considering
instead the values taken by h on the states 7 which, besides the constraints specified
above, are stable with respect the first 10 spins, one finds two distributions whose
mean values have moved towards opposite directions. An averaged over w has been

performed.
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Figure 4.8: Graphs of the four distributions of the values of h described in the text.

4.9 Conclusions

We have investigated the statistical properties of energy levels and metastables states
for a class of deterministic models, the most representative being the sine model
[69], which have attracted much attention in recent years for their glassy behaviour
despite the non-random nature of the interaction. We have pushed further on the
analogy with glassy systems, proving a number of properties typical of disordered
spin models. In particular, using number theoretic methods, we have described the
energy (equivalently, free energy at 7' = 0) landscape as a function of configurations
with a fixed overlap with the ground state. The analysis revealed the existence
of states very different from the ground state but with energy arbitrarily close
to it: this corresponds to the “chaoticity” property of spin-glasses systems, well
established in long range models. More importantly, some of these states can be

local energy minima (equivalently, 1-flip stable at 7" = 0). They are expected to have
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a significant weight on the partition function in the low-temperature region, giving
rise to the non-equilibrium behaviour observed in annealing Montecarlo experiments.
We have been able to estimate the approximate number of these energy minima. The
analytic computations, combined with the numerical findings, strongly support the
conclusion that the bound (4.88) estimates from below the number of metastable
states n(IN), proving their exponential increase with the size of the system.

A number of basic questions about metastability arises now in a natural way, such
as computing the energy density distributions of metastables states, studying energy
barriers among them and their attraction basins. These problems are currently
under investigation using the approach developed in this work and will be addressed

elsewhere.
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Chapter 5

Chiral and spin order of the
random XY model on a tube
lattice

5.1 Introduction

It is well known that in isotropic vector spin-glasses, such as XY and Heisenberg
models with quenched disorder, there can be two different types of phase transitions:
the usual spin-glass ordering, associated with spin variables (S), and chiral-glass
ordering, due to the so-called chiralities variables (C). In fact the system possesses
two different symmetries, the Hamiltonian being invariant under global rotation of
the spins and reflection about some arbitrary axis. Since the pioneering analysis
of Villain [92] the possibility of a competition between spin and chiral ordering
has been investigated both numerically and analytically. A first question is the
lower critical dimensions (LCD) for the two transitions, in particular if they are
the same or not. All attempts to prove rigorous results have failed [93, 94, 95].
Existing numerical simulations [96, 97, 98] agree that chiral order occur in three
dimensions (so that d. = 3), while much more controversial is the situation about
spin ordering. Contrary to what has been the accepted belief for long time [96, 97],
that is ds = 4, recent numerical works considering larger sizes than previous ones
[98], or new definition of defect energies in such a way to reduce the finite size
corrections [99], have suggested that the LCD of XY spin glass may be close to

three. In summary, the Ising behavior seen in experiments on many spin-glass
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materials that are supposed to be described by the disordered 3D XY model is to
be regarded as a still open problem: one possible scenario is that there exists a
chiral-glass phase in the absence of spin-glass ordering, the another one is that the
spin-glass critical temperature is actually different from zero. To gain some hints
about low-temperature properties of the realistic three dimensional case, one and
two dimensional models have been considered as well. It is well-established that a
phase transition, either of spin or chiral type, occurs only a temperature T' = 0.
However there is a strong contradiction between analytical and numerical works.
The former analyzed a one dimensional ladder lattice [100], a tube lattice [101] and
a two dimensional system with special choice of disorder [102]. The outcome of
these studies is a very plausible conjecture that chiral and spin glass correlation
length exponents are the same below the LCD. On the other hand, basically all
numerical experiments [96, 103, 104, 105, 98] have found two different exponents
in two dimensions, vgg ~ 1.3 and vgg ~ 2.6. Only a very recent T = 0 defect
energy scaling study, in which fluctuating twist boundary conditions are considered
(see later), obtained an equality between the two exponents [106]. It is also worth
mentioning that in four dimension, well above the LCD, a simultaneous ordering of
spin and chirality has been revealed, with common critical temperature and critical
exponents [107]. In the conflictual picture described above, it is desiderable to have a
rigorous test of numerical simulations on some known analytic results, to understand
their validity and limitations. This has been our principal motivation in deciding
to study the XY random model on the tube lattice, for which it is available the
theoretical analysis performed by Thill, Ney-Nifle and Hilhorst [101]. Also, since
the tube is a 2 x N lattice (it can be seen as a two dimensional lattice of which one
dimension has been compactified), it has been possible to study fairly long chains

and to study the effects of different twist boundary conditions (fixed or fluctuating).

5.2 The XY spin-glass model

The Hamiltonian of the XY spin-glass model with a bimodal distribution of

couplings is

H =Y Ji;SiS; (5.1)
(ig)
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where the exchange interactions J;; have values £J and S; is a unimodular two
components vector on the site i of a given lattice of dimension d. We consider short-
range interaction so that the sum is restricted to all pairs of nearest-neighbors sites.

An equivalent formulation is
H = Z J cos(0; — 0; — m;j) (5.2)
(3)

where J > 0 and 6; is the phase of the spin, i.e. his angle with a fix direction.
The random bond variables ;; are responsible for frustration and take the values
mi; = 0,7 with equal probability, corresponding respectively to +J ferro-magnetic
and —J anti-ferromagnetic couplings between neighbors spins. On each elementary

plaquette of the lattice a frustration variable is easily defined:
1
fr= g 2w (5.3)

where the sum is over the bonds in a clockwise direction. It is integer for unfrustrated
plaquettes and half-integer for frustrated ones. Globally frustration variables satisfy,

by construction, the condition

Zfr =0 (5.4)

Analougsly one can define the local chiral variable, that represents the sense of

handedness of the spins at the corners of each plaquette:

e =2 5237 (8(0,m) — 8(m, i) sin(6; — 6;) (5.5)

r

where again the sum runs over a directed contour of clockwise orientation and
d(m,n) is the Kronecker delta function (6(m,n) = 1 if m = n and d(m,n) = 0
otherwise). In ground state configurations, chiralities takes value ¢, = 0 on isolated
unfrustrated plaquettes and ¢, = =£1/2 on isolated frustrated ones. They are
invariant under any global rotation of the spins, whereas they change sign under any
global reflection about an arbitrary axis. Having defined the dynamical variables,
spins and chiralities, one can introduce two correlation lengths &; and &, associated

with them to measure the decay of correlation functions
(Si - Siyr)? ~ exp(—|R|/&s) (5.6)
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and
(ci - citr)? ~ exp(—|R|/&) (5.7)

Here, as usual, (---) and ==~ denote a thermal and a disorder average, respectively.
The appearance of a phase transition in the low temperature phase is signalled by

a divergence of the correlation length that is expected to be of a power law type
&(T) ~ (T —Tg)™"s (T — Ty) (5.8)

and
fc(T) ~ (T - Tc)_yc (T - Tc) (5-9)

Below the LCD of the system, one knows that T, = T; = 0, and v, v, measure the

eventually different ordering tendency.

5.3 Domain Wall Renormalization Group

A possible way of extracting the correlation lengths exponents is through a domain
wall renormalization group analysis (DWRG). The general strategy of this approach
is to study the effects of changing the boundary conditions (BC) on the ground state
of a system of linear dimension L. Practically one has to calculate the ground state
energy differences AF/(L) passing from some reference boundary conditions (usually
periodic) to different boundary conditions that introduce a defect or domain wall in

the system. Then by analyzing the L-dependence of AE(L) averaged over disorder
(AE(L)) ~ L? (5.10)

one can measure the stiffness exponent 6, that, in the case of a T = 0 transition,
is nothing else that the inverse of the correlation lengths exponent, § = v~ 1. One
crucial point in applying DWRG is the choice of BC. First of all we discuss periodic
(P) boundary conditions, that are usually introduced to reduce unwanted surface
effects, and we dwell on the requirement of compatibility of the ground state with
boundary conditions.

To understand what we mean by a compatible ground state let us consider for
a while the trivial case of an anti-ferromagnetic Ising model on a lattice. The

couplings between spins o; = +1 in the bulk are all negatives, so that in the energy
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minimum configuration all spins are anti-parallel. Periodic boundary conditions
imply o;4r5 = o; where i = Z,9,... denotes the versors of the lattice in each
direction. Moreover one has to specify how spins on opposite faces are coupled. It is
very immediate to see that, in coupling spins on opposite faces, to have a compatible
ground state one has to use a ferro- or anti-ferromagnetic bond according to the
fact that L is odd or even. In a similar way in the XY model periodic boundary
conditions are defined by requiring 6;,7; = 6;. To define the interaction between
sites on opposite faces one has to choose the global twist A% from one boundary to
the opposite, where the twist in the y direction is defined as the sum of the phase
differences along a loop circling the lattice in that direction. Two possibilities are

available:

e The first is simply to restrict the twist to be a integer multiple of 27. This
is basically equivalent to fix the twist A% = 0, since the lowest energy of the
system Ep(A%) is 27 periodic function in A%. This has been the standard
choice in numerical simulations on XY model and we call it a Random Twist

(RT) measurement for reasons that we explain in a while.

e On the other hand, it is easy to check that adding a twist different from zero on
the p direction is equivalent to make a gauge transformation on that direction
by mi; — mij+Al /L. A more preferable possibility in choosing the twist is that
in which it is not fixed to a constant but it is allowed to fluctuate. In particular
to find the true ground state, compatible with periodic BC, it is convenient to
fix the twist to the value A¥, = A—ﬁ such that EP(A—’f,) is a global minimum
of the lowest energy. This second choice of a sample-dependent twist has been
called Best Twist (BT) measurement and it is also more reasonable from a
physical point of view, since in real experiments open boundary conditions are

usually employed in which the twist can have any value.

The original problem is invariant under discrete gauge transformation modulo 27 so
the RT measurement is performed in a random gauge while the BT measurement
is done in the gauge which minimizes the energy. We denote by EET and EBT the
ground state energy of RT and BT measurements in periodic BC, respectively.

As said before, to apply DWRG one has to change boundary conditions in

such a way to introduce a defect energy relative to the ground state. A spin
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domain wall perpendicular to, say, the = direction is obtained by considering anti-
periodic (AP) boundary conditions in that direction. This amounts to make a
7 rotation on boundary spins on the seam perpendicular to the z direction or,
equivalently, to change the twist from the periodic value A% to the anti-periodic
value A%, = AR +m6(z, p). Since chiralities do not change passing to anti-periodic
boundary conditions, this yields the energy with a spin defect. Two different spin

domain wall energies are obtained, one in RT measurements
AE§" = |Ejp — Ef'| (5.11)

where EXL is the lowest energy with AX, = md(z,u), and another one in BT
measurements
AEET — gBT _ pBT (5.12)

where EXT is the ground state with ALp = A—$+ wo(x, u). Averaging over disorder
and and fitting to (5.10) one extract the two spin stiffness exponents 057 and
HET. Note that in the RT case the spin defect energy has been defined considering
the modulus of the energy difference since there is no special preferences between
periodic and anti-periodic boundary condition, so that a simple mean of the energy
difference vanishes. This is not necessary in BT, where E’Eg > EET in each sample
since EET is the true energy minimum. Of course one does not expect the treatment
of the boundary to affect the result in the infinite volume limit. However, since the
constrains of manageable sizes in numerical simulation on XY model are usually very
severe, different definition of boundary condition can led to very different estimate
of critical exponents when using finite-size scaling. One expects that the RT value
of the stiffness exponent coincide with the BT value at very large sizes, while they
could be different for smaller systems as it is the case for the two dimensional model
[99, 106]. It is our belief that the BT measurement is a better estimate of the true
asymptotic value.

To study chiral order, a chiral domain wall is introduced in, say, the x direction
considering reflective (R) boundary conditions [96]. This means that the spins in
the first lattice iperplane perpendicular to the z direction interact with the images
of the spin in the last lattice iperplane under reflection about an arbitrary axis.
However, at variance with anti-periodic BC, it is not a priori clear how reflective BC

probe the chiral order, due to the fact that in RT a spin domain wall superimposes
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to the chiral domain wall, while in BT the periodic ground state may already trap a
chiral defect. To overcome this difficulties an heuristic expression for the RT chiral

domain wall was introduced in ref. [96]:
AEET = |Em — (Em)| (5-13)

where E,, = min(EET EFL) — EET with EET the RT ground state energy in

reflective boundary condition. In the BT case it is enough to define
AEET = |EBT — EBT| (5.14)

where EgT is the BT minimum in reflective boundary condition.

5.4 Coulomb gas representation

When looking for ground states energies, it is convenient to replace the cosine
interaction in the original Hamiltonian (5.2) with a piecewise parabolic potential

(this is the Villain formulation [108]) that is equivalent in the small temperature

region S
H = E Z(Oz - Hj — 27rnij — 7rij)2 (5.15)
(i)
with n;; = —nj; any integer on the bond 4j. In the following we set J = 2. Using

a duality transformation [102, 109], it is possible to transform the problem in a
Coulomb gas (CG) representation, in which the continuous variables ; on each sites
are eliminated in favor of discrete vortex variables (charges) g, on each plaquettes.
These charges can assume any integer value and, in periodic boundary condition,
they satisfy the charge neutrality condition ), g, = 0. Chiralities are obtained

considering the sum of the frustration and vortex variables

o =frtagr (5.16)

Following Thill, Ney-Nifle and Hilhorst [101] the CG Hamiltonian for the tube lattice
in P boundary conditions reads (by obvious notation, we denote by subscript 1 the

bottom row of the tube and by 2 the up one):

N
Hp = 7 ) (c;:c;",U;(w—a:')-l-c;c;,UIS(x—a:'))

T,z’'=1
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2
1 N
+2r’N (qy iyt 2 aleey + C(w)))

z=1
2
s (qw Yty ivjlc(m T 2(;(%2)) (5.17)
-

where ¢ = C(z,1) T ¢(z,2) are combinations of the two chiralities of the same column

z, withz =1,... N and
Uf(x—a') = % Py % (5.18)
Uile— o) = L 5> @0 (5.19)

T 2N 4= 14 sin’(k)
where ky = 27n, /N with ny = 0,1,..., N — 1. The other two terms in Eq. (5.17)
are corrections order O(1/N) that disappear in the thermodynamic limit, but that
are important in finite size scaling as DWRG, also because they contain, besides the
total electric dipole moment, the global frustration variables

1 X 1 2
fo= 52 2 Mm@y fu= 5 2 TN (Na+) (5.20)

z=1 y=1

which are related to the applied twist. The global charge g, g, are restricted to
be integer valued like the local charges. To obtain Hamiltonian in AP boundary
conditions one has simply to put a twist of 7, i.e. adding a term 1/2 in the last term

between brackets in Eq. (5.17), while the Hamiltonian in R boundary conditions is

given by:
Hp =n* i (cic:, Ug(z—2")+c e, Uz (z — :1:')) (5.21)
3/ =1
where P
Utz - ') = % > 65111277) (5.22)
Up(z—2')=Up(z—1) (5.23)

and the charge obey a modified neutrality condition (3}, ¢, +2f,) mod 2 = 0. Note

that in this case there are no boundary terms.
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5.5 Numerical Results

We have performed numerical simulations to measure the spin and stiffness
exponents. To find the ground state energies we used simulated annealing
[110]. We repeated n, times an annealing schedule starting from random
initial configurations (corresponding to uniform infinite temperature measure),
decreasing the temperature in ng steps till very low temperature and accepting new
configurations according to Metropolis algorithm. It is known that in frustrated
systems the number of local minima of the energy increases exponentially with
the size and that the free energy landscape is a corrugated function of the order
parameters. In order to achieve the global minimum of the energy it is so necessary
to consider increasing values of trials n, and n,, in such a way that there is the
possibility for the system to not get trapped in the local valley of the free energy.
The choice of their values has been made by trail and error. As a criterion we
stopped our searches for ground states if doubling the number of annealings it did
not give any improvement. We used ns; = 10, n, = 20 for the smaller size (L = 5)
and ns; = 200, n, = 1000 for the bigger size (L = 50). For smallest sizes (L < 10)
it has been possible to do an exact enumeration of all configurations, checking the
efficiency of the algorithm. As a crude test, we verified that in BT measurements
the condition Efg > E}?,T is always satisfied. Moreover, in some cases two runs
for the same disorder realizations but with different sequences of random numbers
were performed. Due to the very small magnitude of energy differences between
different BC it was necessary to have a very large number of samples to obtain
stable statistics. For each size L < 35 we considered 10240 samples, while for bigger

sizes we reached 5120 disorder realizations.

In RT measurements we minimize the energy with respect to the chiralities c,
and to the global charges ¢, and g, keeping fixed the global frustration variables.
At variance in BT measurements we consider the optimal value of the twist, allowing
the combinations ¢, + f; and ¢, + f, to vary over any integer or half-integer. The
results of simulations are reported in Fig. (5.1). At variance with the prediction
of analytical calculations [101], i.e. the stiffness exponents 05 = 6, = —1.7972.., in
all cases we basically found s = 6. ~ 1, both in BT and RT measurements. More
precisely, the results of the best fits on data of Fig. (5.1) are: 957 = —1.04 + 0.04,
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Figure 5.1: Spin and Chiral defect energies versus N: AEET (circles), AEET (squares),
AEET (triangles up), AEBT (triangles down) for N = 5,...,25 in steps of 1 and
N =25,...,50 in steps of 5.

98T = —1.16 £0.04, OET = —1.02 + 0.05, 68T = —0.97 £ 0.05.

The observed discrepancy between theoretical predictions and numerical results
is the signature that the derivation of Thill, Ney-Nifle and Hilhorst is incorrect.
The proof of their results is in two steps: first they give a description of lowest
energy states in the thermodynamic limit, proving a set of properties for ground
states in different boundary condition; then they consider energy differences in the
RT approach. To do this they estimated the bulk interaction potentials in Eq.
((5.18),(5.19)) in the infinite volume limit N — oo, (continuum limit on k), finding

that in periodic boundary conditions, the charges c; interact via long-range Coulomb
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potential
|z — |

Uf(z —a') = o — o (1 -2 ) + By (N) (5.24)

with 0 < |z — 2'|/N < 1, while the charges ¢, affect each others by a short range

dipolar interaction

V2

Up(o—a') = (3 - 2v/2)%@) L B_(N) (5.25)

with d(z, /) the length of the shortest path between z and z/. Similar expression

are obtained for reflective boundary conditions, Eq. ((5.22),(5.23)),

N 2]z — 2’
2
Up(z—1') = %(3 — 2v2)4=® 5z, 21) + E_(N) (5.27)
where o(z,z/) = —1 if the shortest path between z and z/ crosses the rightest

vertical bond and o(z, z/) = 1 otherwise. The errors terms E1 (N) are corrections of
leading order O(1/N) due to the substitution of the summation with an integral in
the complex plane. We point out that, while these finite size terms can be ignored
in studying ground states in chosen boundary condition, they must be retained in
considering ground states energy differences between different boundary conditions,
since excitations involved are of higher order. Consistently we checked that the
set of ground state properties proved in ref. [101] are verified also in numerical
simulations. In particular in the energy minimum configurations the Coulomb energy
is minimized independently of the other energies involved and the chiralities ¢, take
the values 0,+1/2, so that it is always possible to partition the non-zero chiralities
into dipoles, grouping together two successive chiralities of opposite sign along the
z-axis. On the other hand, besides the global spin-wave term in Eq. (5.17), we have
individuated another finite size term O(1/N), i.e. the error FL(N) in estimates
((5.24), (5.25),(5.26) and (5.27)), that must be retained in analyzing how the system
adjust to anti-periodic or reflecting BC starting from periodic BC.

The analysis of paragraph 4 of ref. [101] must therefore be modified in the
following way. Let us denote the ground state configurations in P and AP boundary
conditions by ¢ (P) and ¢ (AP), respectively. It still holds the distinction between

even and odd number of frustrated plaquettes (x,1) in the bottom line of the tube.
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However in the even case the are two possibilities. The first one is to make vanish the
global spin-wave term both in P and AP just reversing a sequence of dipoles, that
costs an amount of energy N~179"2(see [101]). Since the chiralities configuration in
P and AP are not the same, the energy difference will involve the contribution of
E_(N), so that

AEsp ~ E_(N))Y (¢, (AP)c,(AP) — ¢, (P)c,,(P)) +

T,z

N71.7972 (528)

while the correction due to E, (V) can be ignored because of the neutrality condition
Y zc¢i = 0. The other possibility is that the system choose to retain the same
configuration in P and AP boundary conditions, so that the correction proportional
to E_(N) are equal in both BC conditions and will cancel out considering the
energy difference. However, in this case, either in P or AP the spin-wave term
(i.e., the last term in Eq. (5.17)) is different from zero. As a result, in both the
two described scenarios AE p ~ 1/N, where AE p denotes both RT and BT
measurements. Considering instead an odd number of frustrated plaquettes (z,1),
the energy configuration will be the same in P and AP boundary conditions because
the system is never able to let vanish the spin-wave term, so that the energy difference
is always zero, AF4p = 0. This is exactly what we have observed in numerical
simulations.

For what concern the chiral stiffness exponent, one has to note that, in general, in
reflecting boundary conditions there are both the contribution of E4(N), since the
charge neutrality condition is modified. As before, in passing from P to R boundary
conditions, in the case of even number of frustrated plaquettes (z,1), a reversal of
dipoles is involved, so that there is an amount of energy of order 1/N besides the
excitation N~1772_ In case of odd number of frustrated plaquettes the global spin

wave term never vanishes in PBC so that again AEg = 1/N.

5.6 Conclusion

Summarizing, we have studied a random XY spin-glass on a tube lattice. We have
found a disagreement between numerical simulations and analytical predictions. We

solved it noticing the lack in the theoretical analysis of correction terms O(1/N).
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Nevertheless the main conclusion of ref. [101], i.e. the equality of the spin and
chiral stiffness exponents, is confirmed by the numerical study, both in BT and
RT measurements, giving support to the conjecture that spin and chiral correlation

length exponents are the same below the lower critical dimension.
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Chapter 6

Spin-glasses and portfolio
optimization

6.1 Introduction

Portfolio theory is a basic pillar in economic analysis. It was originally proposed
by Harry Markovitz [111] during the 50’s. The approach was that the return of
any financial activity is described by a random variable, whose expected mean and
variance (interpreted as volatility) are assumed to be known (in some way or other)
from its historical past. The selection of a particular portfolio is based on the mean-
variance principle, ¢.e. if two portfolios are given, and the expected return of the first
portfolio is higher than the second one; or the variance of the first portfolio is lower
than the second one, we say that the first portfolio dominates the second; the latter
being outside the decision field of a rational investor. Portfolio selection allows us
to find the set of efficient portfolios, i.e. those portfolios not dominated by anything
else. The rational investor eventually chooses among these (efficient portfolios), in
a subjective manner, according to his/her preferences towards risk. Much criticism,
over the years, has been addressed to Markovitz’s model. For instance, the choice of
variance as a signal of risk has been criticized on logical grounds: the model requires
a quadratic utility function or a set of returns that must be normally distributed,
but the two hypotheses are not mutually compatible. Criticism has also been made
of other aspects of the original model. In spite of this, the Markowitz approach has
been very successful, because of its ability to grasp the hard core of the problem of

how to allocate wealth among alternative assets. Extended versions of the model (for
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instance, in order to increase the number and types of assets considered; or to reduce
computations for the estimated matrix of variance/covariances among returns), have
almost continuously been introduced, and today various and updated versions of the
original model are widely used by financial practitioners. Quoting from a successful

fund management story 1

Even if point estimates of risk and return variables fail to represent reality
fairly, insofar as inputs stem from well-grounded interrelationships,
the mean-variance optimization process produces valuable insight into

efficient portfolio alternatives.

It is well-known that, in the case where short sales are allowed, it is straightforward
to find an efficient investment strategy (basically one has to solve N equations in N
unknowns, where N is the number of risky assets) [112, 113]. In practice, however,
the short sales are usually allowed under very restricted legal conditions. Since the
”shorted” security is "on loan” and has to be returned to the original owner at a
preagreed date or demand, the lender must be protected against the eventuality of
borrower’s default. The short sales proceeds thus usually serve as collateral and are
held on deposit with the lender. In addition to this collateral, the borrower is usually
required to maintain a certain cash margin to ensure that the shorted security will
be returned even if its market price rises. The incorporation of these constrains on
the proceeds of short sales has been considered by Lintner [114, 115], who solved the
problem assuming that the short sales proceeds plus 100 % margin are deposited
with the stock owner, who pays interest on the deposited funds.

The general case where short sales are not allowed is usually very complicated. In
this work we extend and generalize the traditional analysis (short-selling included),
by considering the case of futures markets, where the short sale problem is regulated
through the mechanism of margin accounts. Therefore a generalization of the usual
portfolio optimization problem is tried out in a radically new setting: a hypothetical
hedge-fund is considered, with the aim of optimizing its assets portfolio. Specifically
- regarding the current state of the art in portfolio selection - the model for future

markets allows for:

!David Swensen, Pioneering Portfolio Management: An Unconventional Approach to
Institutional Investment, Free Press, 1999
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e long-buying/short selling activities in equities,
e leveraging on margin accounts,
e a set of a (relatively) large number of assets to be prospected.

The main result we aim to discuss here is that the portfolio optimization problem in
future markets naturally belongs to the realm of “complex” problems. In particular,
a very large number of (quasi) equilibrium solutions coexists in the model and any
procedure developed to reach a decision regarding the structure of the portfolio must
face this problem. To be a little bit more precise, if we have N assets available to
the investor, for a fixed expected return R, the number n(N, R) of risk local minima

grows exponentially in the number of assets, i.e.:
n(N,R) ~ (BN

where w(R) is a positive number depending on return. Since we have this multiple
equilibrium solution not equivalent among themself respect to the level of risk, we
have to implement a second step in the solution procedure in order to get the global
equilibrium. This conclusion is a direct consequence of the application of Lagrange
optimization and the non-linear constraint on the total wealth in futures markets.
The issue of non-unique equilibrium is a well-known chapter of economic analysis,
particularly in models with money, increasing returns and imperfect competition
[116] and a new line of research on equilibrium beliefs is being developed. However
it should be emphasized that, in this work, the issue of multiple equilibrium solutions
is discussed in a quite different setting. The underlying idea is that the selection
of a unique optimum portfolio obtained from portfolio optimization in its current
form (see for instance [112, 113]), works well only if we introduce drastic and
perhaps unrealistic simplification. Enlarging the picture to a certain extent, by
relaxing the most restrictive assumptions in line with the practical experience of
fund management, when calculating the solution for the optimum portfolio, we reach
rapidly the threshold of a so-called NP problem, an area of research currently still
largely ignored in economic computation [117, 118]. We will deal in this work with
the complexity of the problem for a concrete case of a portfolio made of 22 risky

assets. We will explicitly show where complexity does arise and we will suggest the
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necessity of using algorithms typical of the realm of other optimization problem (like

the so-called ”simulated annealing”).

Our analysis is built on a seminal idea by Galluccio, Bouchaud and Potters [119],
who have re-stated the problem of a solution to the portfolio optimization problem
in futures markets in terms of a spin-glasses problem. For readers unfamiliar with
this topic, spin-glasses is a branch of modern statistical physics of complex systems,
originally related to magnetization of materials [2, 3]. We remained to the appendix
for a brief introduction to spin glass theory and for an explanation of the connection

to portfolio optimization.

The rest of the Chapter goes as follows. In Section (6.2) we define the model
of portfolio optimization in future markets and we explain the non-linear constraint
that is involved. A first analysis of the portfolio variance is presented in Subsection
(6.2.1), showing the complexity of the problem compared to the usual case of short
sales with a linear wealth constrain, while in Subsection (6.2.2) the general procedure
and analytical calculation needed to construct the efficient frontier is obtained. We
deal with a concrete example in Section (6.3), considering a portfolio of 22 assets
on the Nasdaq Market and solving it by means of computer calculations. We show
the multiple equilibrium solutions and we calculate the efficient frontier. The risk
function as an exponential number of local minima and one needs to select by hand
the lowest one. Moreover, there is the possibility that portfolios completely different
among them correspond almost to the same value of the risk. Finally, in Section
(6.4) we give some remarks on the vaiance/covariance matrix and in Section (6.5)

we draw our conclusions.

6.2 The model

In this section, we present a model of portfolio optimization, where some traditional
assumptions are relaxed. Specifically, in order to allow for the maximum flexibility
in the model, a hedge-fund as rational investor agent is considered. Let us start
from the standard definitions. We consider a portfolio P of N risky assets indexed

by the subscript ¢ which takes values ¢ = 1,..., N. The variance (i.e. risk) of the
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portfolio is
N
op = Cijpipj =p" Cp (6.1)
5,j=1

and the mean (i.e. expected average return)

N
Rp = me =plr (6.2)
i=1
where p = (p1,p2,...,pn) are the shares of a given total wealth to be invested, and

the external parameters are

r; - the expected return on asset 1,

Cjj - the matrix of variances (i = j) and covariances (i # j).

and we have introduced the usual vectorial notation with 7' to denote the transposed.
The aim of the optimization is to find the most efficient investment strategy,
i.e. to evaluate proportions p of the total wealth W that minimize the risk 072,, for
a given return Rp (or viceversa shares p that maximize the return Rp for a given
level of risk 072;)). In other words, we would like to calculate the efficient frontier,
that represents the relationship between the risk of the portfolio and the expected
return of the portfolio itself having the best utility for the investor. Knowing the
efficient frontier, once that a particular expected rate of return has been identified,
we can determine the correspondent efficient portfolio; it is such that its variance (or
riskiness) is a minimum. Therefore, once one of the two (either the risk or the return)
has been chosen by the investor, the other variable is derived as a consequence.
Since long-buying and short-selling are allowed, and leveraging on margin

accounts works, then the budget constraint is

N
Y Ulpil=W (6.3)
i=1

where T' is the (fixed) margin constraint and p; > 0 or p; < 0, depending on the
sign of the contract (buy or sell respectively). The margin is assumed fixed for
all operations, and it does not change over time according to price variations of the
underlying assets. Moreover, the problem of issuing futures on behalf of the financial

institution is not considered. Without loss of generality we can set W/T" = 1, so that,
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introducing the vector s whose components are s; = sign(p;), the budget constrain

becomes:

N
Y Ipil=p's=1 (6.4)
i=1

We remember the reader that the sign function is defined as sign(z) = 1if z > 0

and sign(z) = —1ifz < 0.

6.2.1 ”Complexity” of the model

Let us consider the problem of finding the minimum of the variance subjected to the
only budget constraint (no fixed average portfolio return). In other words we want
to minimize the portfolio variance Eq.(6.1) with the non-linear constrain given by

Eq.(6.4). We introduce a Lagrangian function with one Lagrange multiplier u:
L(p,p) =p"Cp — u(p"s — 1) (6.5)

Differentiating with respect to the N 4+ 1 unknowns p and p we obtain the following

equations for the extreme points
L o~
p= §uC s (6.6)

pls=1 (6.7)

where C 1 is the inverse of the correlations matrix.

Inserting Eq.(6.6) in Eq.(6.7) we can solve for y and then for p

2
" T (6.8)
1 -1
p= STC’—lsC 8 (6.9)

Applying the sign function to both sides of the last Equation, we finally obtain
s = sign(C~ts) (6.10)

where we have used the fact that, since C is a positive definite matrix, the same is

true for C~1, so that sTC~1s > 0 for every value of s.
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The original problem has thus been mapped in finding the solution of Eq. (6.10):
once the s; that solve this Equation are known, the shares p; can be calculated using
Eq. (6.9),while the portfolio variance is given by

1

o2 =

But solving Eq. (6.10) is a very tough task. It is exactly the same Equation that
appears in spin-glasses theory when one looks for 1-flip stable configurations (see
the Appendix). It is well-known in physics [2, 3] that Eq. (6.10) admits for a
generic random matrix C~! an exponential number of solution. Moreover these
solutions are ”chaotic”, i.e. they are completely different one from another and they
completely change varying the number of degree of freedom. In our case the matrix
C~! is not random but it is constructed from the hystorical datas. Nevertheless,
since hystorical prices/returns movements are generated by market fluctuations,the
correlation matrix C' (and so its inverse C~!) can be seen as a generic realization of
some specific random matrix ensemble. In this way we can borrow the results from

physics and directly draw some first conclusions (see also [119]):

e At variance with the usual case in which short sales are allowed, where we
always find a minimization equation that admits a unique solution, in the
present case of futures markets we have an exponential number of portfolios
for which the risk function has a (local) minimum. So we face the embarace
of which solution to choose and we need to calculate by hand the portfolio

variance on each solution to find the true minimum.

e We can have very different portfolios corresponding to (local) risk minima

having almost the same risk value.

e Adding one asset to the portfolio it radically change the shape of efficient

investments.

6.2.2 Constructing the efficient frontier

In the previous Section we have shown how the complexity of the problem naturally
arise in the minimization procedure for the case of the global minimum of the

portfolio risk. This does not say nothing about the efficient frontier (even if it shows
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the instability of rational investment decisions). To completely solve the problem,
we have to repeat the minimization of the variance fixing the average return to the
value R with an extra Lagrange multiplier v.
Thus the problem is now to minimize Eq.(6.1) subject to Eq.(6.4) and to the
additional constraint

Rp=p'r=R (6.12)

We introduce the Lagrangian function
L(p,p) =p" Cp— p(p"s — 1) —v(p"r — R) (6.13)
Differentiating with respect to the N + 2 unknowns p, ;4 and v we obtain
1 1
p= iuC’*ls + 51/0’17"
st =1
p'r=R
(6.14)

Inserting the first equation in the second and the third, we can solve for y and v,

and then for p. Defining

a=s'C1s

B=rlC s
y=rTCtr
(6.15)
we obtain the following expressions:
ay — f?
Ra—g
v=2-"— "
ay —f
- R Ra —
pzify '820_184-70( IBQC_lT
ay = p ay—p
(6.16)

Applying the sign function to both sides of the last Equation and remembering that
s = sign(p) by definition, we finally obtain

, vy—RB 4 Ra—f 4 )
—_— = r A7
S szgn( sC s+ 5C (6.17)
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This is the basic equation that substitute Eq.(6.10) in the case of a fixed average

return R. If we now identify

%0—1 = J (6.18)
%C‘lr —h (6.19)

we establish a perfect analogy between the Equation to be solved for the portfolio
optimization problem in future markets and the one for 1-flip stable states in spin
glass models: J is the coupling matrix between spins and h is the external magnetic
field.

The general procedure for tracing the N-stocks efficient frontier in the case of

future markets thus can be summarized as follows:
1. Fix a certain value of the average expected portfolio return R.

2. For this return R solve the system of N equations (6.17) for the vector
s = (s1,82,...,8N)- In general the number of solutions n will be exponential in
number of assets N: n ~ e¢“"V, where the exponential rate w = w(R) depends

on the fixed return R.

3. Calculate the value of the proportions investment p = (p1,p2,...,PN)
corresponding to each solution of step 2 through formula (6.16) and then the
associated risk. Select the lowest value of the risk and the corresponding

optimum portfolio investment.

4. Increase the return R by a certain (constant) amount and repeat the entire

procedure from step 2 throught 4.

6.3 A worked example

In this Section we explicitly treat an example with real data: we demonstrate the
”complexity” of our problem and we calculate the efficient frontier by means of

computer calculations.
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6.3.1 Data

We considered the case of a portfolio consisting of 22 risky assets. These risky assets
are common stocks traded on the Nasdaq, chosen among the best and worst stocks
in the period October 1, 1998 - November 13, 2000. An historical record of daily
rates of return on these stocks for the 553 days of the period was used to estimate the
relevant parameters - the mean return r; and the variance/covariance matrix Cj;.
The data source is DataStream. Calling x(i, k) the prize of the i-th asset (where
i=1,...,22) at the k-th day (where k = 1,...,553), the formula used to estimate

returns and covariances are:

~ 2(6,553) — z(3,1)

i = - 2
T 200 (6.20)
1 553
1 k)20, 21

The estimated mean returns are given in Table (6.1) at the end of this Chapter,
which also lists the stocks by name, while the variance/covariance matrix is splitted
in Tables (6.2) and (6.3).

6.3.2 Multiple solutions

First of all we analyzed the whole set of possible choices that one obtains for a fixed
value of the return on the portfolio composed by N = 22 assets. We choose to fix
the average return to the value of the return of the Nasdaq index in the period we
considered: R = Ryas = 0.84 (i.e. 84%). Applying the "receipt” described in the
previous Section, we found the solutions § = (§1, 9, ...,sy) of the Eq.(6.17) doing
an exhaustive enumeration of all the 2V possible values of the N-dimensional vector
s. We found 5625 § vectors that satisfy Eq.(6.17). From them we calculate the
corresponding 5625 proportions p using Eq.(6.16) and the 5625 risk value 62 using
Eq.(6.1). These are the risk local minima. Then we selected by hand among them
the global risk minimum, 0%,;, = 0.15856, and the corresponding efficient portfolio
proportions pyry. The dependence of the number of solution n(N, R) from the
number of assets N and from the imposed average return R is investigated later.
For the moment we focus our attention on the analysis of the risk local minima for
the considered case N = 22, R = Ryas = 0.84. We show how they are distributed
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Figure 6.1: Histogram of the local risk minima. The number of assets is N = 22 and the
fixed portfolio return is the Nasdaq return R = Ryas = 0.84. PDF stands for Probability
Distribution Function.

in Fig.(6.1), where we plot their probability distribution function, i.e the histogram
normalized to have area 1. We see that most of the risk local minima have a risk

value higher than the global risk minimum 0%,

It is important to remark that the local minimum which corresponds to the
maximum of the distribution shown in Fig. (6.1) are in fact the solutions that one
would obtain with very ”high probability”. To be more precise, if one consider
portfolio of some bigger dimension, just say 100 assets, then it would be impossible
to compute exactly all the local minimum but instead one should rely on other
methods. For example (but not only) one could implement algorithm developed
in the realm of spin glass theory, aimed to freeze spin glass systems down to zero
temperature in order to reach the real minimum (ground state). This rich class of

algorithms can be roughly speaking addressed as the so called simulated annealing
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techniques [110, 2]. If one try to implement this algorithms then it would almost
impossible to end up on the efficient frontier, but instead one would almost surely
converge to a portfolio solutions corresponding to an higher risk (see also Section
(6.3.4)). Nevertheless we observe that there are also proportions p, which can be very
different among themselves and from pp;ry but with a risk value very close to lowest
value of the risk 0%,;,. Suitable modifications of the previous general algorithm can
eventually allow to reconstruct some of such almost optimal solutions.

From a practical point of view, this quasi-degeneracy of the risk value with
corresponding proportions p very far from each other is the most interesting aspect
of this work. In order to illustrate better this point, we use in simple terms a
very important and not trivial object in spin glass theory, the so called overlaps
distribution. To be more concrete, assume that for some reasons we know the global
minimum solution 5 = {31,...,5,}.2 Moreover, let also denote by § = {31,...,5,}
another local minimum solution. A simple number, which describe how different
this two solutions are, can be defined basically by counting how many s;’s we must
flip in order to go from one configuration to the other. This information is contained

in the real number —1 < g = ¢(5, §) < 1 defined as:

q(§, §) =

Sl

n
Z SKSk
k=1

In the left side of Fig.(6.2) we plot the probability distribution function of the
numbers g¢;’s, obtained by measuring the overlap of any single local minimum with
the global solution: ¢; = ¢(5, §(j)), where §(9) runs over all possible 5625 solutions.
In particular, this histogram show clearly that most of the solutions are in fact quite
different from the one we would like to calculate a priori, i.e. s.

Actually, a little bit more than this can be said. Roughly speaking, in general
two different local solution might have almost the same risk level but in a strategic-
economic context they can be totally different. This is shown in the right side
of Fig.(6.2) , where the histogram of all the overlaps between different solutions is
shown. Summarizing, a multiple choice is available to the investor and an irreducible

component of randomness is present in the final decision. Moreover, it is likely that

For simplicity, we consider only the sign of the proportions s; = signp;, but the same reasoning
can be extended to the proportions themselves
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traditional method for reconstructing the minimizing solution will lead the investor

to be "trapped” into a quite different local minimum.

15 T T T 15

0.5 | q 05
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-1 -0.5 0 0.5 -1 -0.5 0 0.5
q q
Figure 6.2: Left: the distribution of the overlap between the configuration sy

corresponding to the risk global minimum and the others configurations § corresponding
to the risk local minima. Right: the distribution of the overlap between the all the
configuration ¢ (including oarrn) corresponding to the risk local minima.

6.3.3 Exponential growth of solutions in the number of assets

The impossibility of taking a rational decision described in the previous paragraph
get even worst if we consider the dependence of the solutions from the number of
assets N. We performed numerical experiments varying N from 5 to 22 keeping the
average return R fixed to Ryas. For each value we calculate the number of local
risk minima n(N), i.e. the number of solutions of Eq. (6.17). As it is clear from
Fig.(6.3) this number growths exponentially with the number of assets (note the
lin-log scale in the graph). The best numerical fit yields n(N) ~ exp(0.419N).

This exponential growth of the number of risk local minima with the number of
assets is the exact analog of the exponential growth of the number of local energy
minima with the number of spins typical of the spin-glasses. From the economic point
of view, the consequence of this growth is that the uncertain on taking a rational
decision enlightened above get even bigger by increasing the portfolio dimension.

On the other hand the number of possible decisions decreases for increasing value
of the fixed return R under which minimization is performed. We argue this fixing

N = 22 and calculating the number of risk local minima varying the return R in the
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Figure 6.3: The number of local risk minima versus the number of assets N. The fixed
average return is the Nasdaq return Ryas = 0.84. The solid line is the best numerical fit
n(N) ~ exp(0.419N)

range [0,10] in constant steps of 0.1. In Fig.(6.4) we plot the number of solutions
of Eq.(6.17) corresponding to each R value. We see that the local risk minimums
decreases for increasing value of the return, becoming zero at R ~ 7. Above these
threshold we do not find from Eq.(6.17) any portfolios satisfying both the budget
and the return constrains. One should look for risk minima on the border of the
manifold where Lagrange optimization is performed. We did not investigated this

point further.

6.3.4 The efficient frontier

Here we use the data concerning the 22-stocks in order to compute the efficient
frontier and two more related curves. More precisely, we first allow the averaged

return to range from 0 to 7 in constant steps of 0.1 and for each value of the return we
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Figure 6.4: The number of local risk minima versus the average portfolio return. The
number of assets is fixed to N = 22.

calculated the proportions p corresponding to the risk local minima. Then, among
them we selected the one associated to the risk global minima and the one associated
to the worst choice, namely the local minimum corresponding to the portfolio at the
very right tail of Fig. (6.1) . Moreover, for a given fixed return, we also calculate
the averaged risk . Namely, if n is the total number of local minima and 0]2- are

the associated risk minima (j = 1,...,n), we define

By varying the return R, we use this data to reproduce a kind of averaged efficient

frontier, which is shown in Fig. (6.5), together with the other two.
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Figure 6.5: Efficient frontiers for the portfolio consisting of 22 assets. The continuous line
is the “best-efficient” frontier corresponding to the lowest value between all the risk local
minima. The dotted line shows the “average-efficient” frontier, i.e. it correspond to the
average value of the risk between all the risk local minima. The dashed line is the “worst-
efficient” frontier, constructed by using the higher values of the risk local minima for each
fixed return.

6.4 A few remarks on the variances/covariances matrix

A few words of comment about the correlation matrix are in place. The computation
of matrix C of variances/covariances between return variations of different assets is
a key issue in the theoretical solution of the portfolio optimization problem. The
study of these correlation matrices is a crucial problem in financial theory, both
for developments of Markowitz’s theory of optimal portfolios, and for problems
(more recently introduced) of risk management, related to the so-called value at
risk models. For covariance matrices used in value at risk models, the discussion is

open to an almost continuous flow of new experiments, with an empirical evaluation
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of the obtained results, based on a single case (for instance see [122]).

In ref. [119] a random matrix approach is proposed by Gallucio et al. as
an alternative to well-established index models -originally presented by Markowitz
himself and developed by Sharpe [112]. In this Section we try to comment about
the random approach proposed by Galluccio et al. (cit), showing his richness from a
theoretical point but also stressing the difficulties in concrete applications. Roughly
speaking, these authors assume the matrix C of variance/covariance as random; in
this way they can exploit a consolidated approach based on random matrix theory
(see [123, 85]) to gain some information toward the solution of the problem. In
particular, from an historical analysis on asset prizes variations in various Stock
Markets, they argue that correlation matrix is a member of the so-called Exponential
Orthogonal Ensemble. With this hypothesis, they are able to prove analytically the
exponential increase of risk local minima, applying a well-known formula in spin
glass theory, which allows to compute the total number of local energy minima by
averaging over all possible random realizations of the model.

Assuming the matrix C as random is quite reasonable in terms of financial
theory: prices/returns movements are in any case random, since they can be
read as realization of a stochastic process, generated by market fluctuations. A
second step consists in evaluating the significance of C not in terms of individual
elements, but in terms of a matrix as a whole, i.e. by examining the spectrum of
the eigenvalues/eigenvectors of the matrix itself. The main aim here is, roughly
speaking, to separate the randomness contained in the data from the real market
information. Let us consider a portfolio of N assets: the correlation matrix contains
N(N —1)/2 entries, which must be computed from N time-series of length T. If T
is small compared to IV, one would expect that the determination of the covariance
is most likely to be noisy, and therefore the empirical correlation matrix is to a
large extent random; this implies that the structure of the matrix is dominated by
measurement noise and real information are somewhat hidden in the data.

Therefore, and this is the second important point made by Galluccio et al.,
moving along this path, the theory of random matrices allows us to grasp some solid
results. But clearly, a lot of further research must be done. A deep analysis of
eigenvalues (and corresponding eigenvectors) performed in ref [124] sheds relevant

light on the statistical properties of empirical correlation matrices. Along this
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perspective, for instance, Galluccio et al. get some useful empirical results. In the
case of the S & P500, less than 6 % of the eigenvectors, which are responsible for 26
% of the total volatility, appear to carry some information, and that is a surprising
result. From this point of view, it should be stressed that Markovitz’s portfolio
scheme, based on a purely historical determination of the correlation matrix, proves
particularly weak, since the elements of the matrix itself are dominated by noise.

Despite the above appreciations on the new random approach by Galluccio et al.,
it must be noted some unavoidable (at least for now) drawbacks of this approach.
First of all, the identification of the random matrix ensemble to be considered is
made only on the basis of the historical data analysis. It is nowadays clear that, to
have a representation of correlations faithful to reality, future expectations must be
included in the determination of the random matrix ensemble. Secondly, one has to
note that the random approach could be useful in establishing average properties,
like the exponential number of risk local minima, but it is not manageable from a
practical point of view to exactly find the desired solutions.

In order to bring the analysis to a manageable framework, an alternative view
to Galluccio’s idea has been advanced in ref. [125] where a different deterministic
approach to the treatment of correlations is introduced. This deterministic approach
(up to this stage only a conjecture) moves from the recent discover in spin glasses
theory that an exponential number of energy minima, is not only typical of disordered
spin systems, but can appear also in sufficiently complex deterministic models
[85, 126]. Moreover the deterministic approach proposed in ref. [125] might be
more suitable in an economic perspective, since it takes its roots in an expectation
hypothesis (originally proposed by Krugman [120]) and allows for a portfolio
strategy. It should be stressed, however, that both random and deterministic
approaches reach exactly the same conclusions: a multiple equilibrium solution. The
difference is in terms of their economic interpretation: the deterministic approach
is more manageable for a strategy of investment activity; its underlying idea of an
oscillatory behavior is coherent with other line of research in economic analysis (see
[120]).

To summarize this section: matrix C of variances/covariances is a necessary
component for calculating the optimum portfolios in a mean-variance framework;

in fact the matrix is a set of correlation values (usually) calculated (in some way
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or other) from the past; conventional economics analyzes -in terms of statistical
significance- each element of the matrix, independently one by one. But if we
consider the significance of the matrix as a whole, treating it as random, the whole
picture is very different. On the other hand the application of a deterministic
approach presents, from the economic viewpoint, some undoubtedly advantages.
Clearly we have no chance of bypassing the multiple solutions setback, that is
inherent in the complexity of the problem, but, knowing the actual solutions set
we can try to develop a solution that allows for a strategy related to some form of

rational behavior.

6.5 Conclusions

Originally hedge-funds were created on the basis of two fundamental aims: first,
exploiting at the highest possible level financial leverage; secondly, in asset allocation
planning, operating in financial markets according to a scientific approach. The
first idea has proved very risky, as shown by some dramatic hedge-fund collapses
(like the case of L.T.C.M.). The soundness of the second assumption (the scientific
approach) has been challenged on theoretical grounds in this work. Investment
activity is ontologically risky (in fact, in projecting future results, we must make use
of the correlation matrix, which per s is derived, in one form or another, from the
past). Moreover the hope for a rigorous approach is also fragile. The theory needs
to be flexible enough to consider the problem of portfolio selection of some practical
use for relatively highly sophisticated financial operators, such as hedge-funds. This
implies the possibility to introduce a relatively wide range of hypotheses, not too
far from concrete market situations, without necessarily being too simple.

We have presented here a model of portfolio optimization general enough to allow
for: (a) a set of investments in equities through financial leverage (i.e. investment
operations with margin accounts); (b) simultaneous long-buying and short-selling
of the assets; (c) a relatively high number of assets involved. We have reached
a couple of conclusions. Firstly, the model has a complex solution in terms of
standard optimization method. Secondly, borrowing a suggestion from ref. [119],
we get a solution by exploiting a hooking with the spin glass analysis. However, the

solution obtained is still non conclusive, because in fact we have reached a multiple
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equilibrium solution, where the number of equilibria is exponentially proportional
to the number of assets involved, and each equilibrium can be chaotic (i.e. crucially
depending on initial conditions) and very different one from the other, making the
idea of rational behavior very awkward to interpret. This multiple equilibrium
conclusion is general for a realistic and relevant example (portfolio optimization),
and can easily be extended to other fields of economics, when the constraint for
the objective function to be maxi/minimized is nonlinear. In more sophisticated
language, this above picture is often referred to as a complex situation. It has been
suggested how portfolio optimization in future markets should leave the traditional
economic optimization procedure and enter instead the combinatorial optimization

area.
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Table 6.1: Rate of Return

Name Symbol | Return

1 Adobe ADO 7.766
2 Amazon AMA 0.626
3 Ameritrade AME 3.585
4 Aol AOL 2.926
5 Appmc APP 33.602
6 Broadvis BRO 23.269
7 Cisco CIS 2.521
8 Cmgi CMG 1.449
9 Dell DEL -0.216
10 Doubleclick DOU 1.910
11 Ebay EBA 5.429
12 Inktomy INK 1.813
13 Intel INT 0.831
14  Jdsuni JDS 12.465
15 Microsoft MIC 0.277
16 Oracle ORA 4.500
17 Psinet PSI -0.721
18  Qualcomm QUA 11.941
19 Sun SUN 6.490
20 3com TRI 2.456
21  Worldcom WOR -0.467
22 Yahoo YAH 0.959
**  Nasdaq Index | NAS 0.839
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Appendix A

Proof of formulas (4.47) and
(4.48)

We sketch the basic steps of the calculation. Set

N N—j
a——§+2s CJ_(s—j>'

We then have

XUCEESS (a—2zzw)n=% >3 ( 1) (—222Jwy)k-

o TER, TET YET zCTyer

For n =1 we get

N N N
5 (zszy) I S o
TEQs \ZTEwyEw r=1y#z,y=1 z=1

—c9)dpr = c2(N — 1) + ¢,

I

NE
NE
NS
gkl

HQ

@Q

+
(]

o

8
Il
—
<
Il
—
8
Il
—

whereas for n = 2 we have

3 (zmy):i S o 35 s

weNs \TEWyEwW z=1lu#zu=1 TFz2,uw=1 y#z,u,r;y=1
N N N N
+ Z c3J 0,0y + Z c3Juy0uoy + Z c3Jp,0,0, + Z c3Jpu 00y
y#z,u5y=1 y#2,uy=1 z#z,u;1=1 TFz,u;5=1

N N N N
+ Z c3Jzz + C2Jpu0,04 + 2y, + CQJuu] + Z J2z [ Z Z C3J$yazay

r#zu;x=1 z=1 r#z;x=1y#z,z;y=1
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N N N
+ Z CoJ3, 0.0, + Z C2Jyzayaz + Z codpy + C1Jy,
T#£z;x=1 y#£zy=1 rF£z;x=1
= C4(N — 1)(N — 3) =+ 263(N — 1) =+ 2CQ(N — 1) +c1,

which easily give the desired identities.
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Appendix B

Proof of formula (4.54)

Let us first extend everything to the set {1,2,...,p — 1} which, p being prime, is a
number field. Here we can exploit the multiplicative structure of the field and of the
‘extended ground state’ o0 = <%), z=1,...,q, with ¢ = p—1. With slight abuse of
notation we shall use the same symbols Qg, ps and E ; to denote the corresponding

extended quantities. It is immediate to see that m(c’) = 0 and

- iy EGVEG)

In order to calculate the second moment we consider

S

( i ) 2o (5).

where, for any given 7 € €, 72 is the collection, with multiplicity, of all possible
products z; - z;, z;,z; € 7 (all the operations are mod p). For example, if
7 = {1, %9, 73} then 72 = {22, 13, 23, 2129, 2173, T271, 371, T2T3, T3T2 }. Also, for

any given z € {1,...,q},

q
cplz) = Z {number of times z € 72} = Z #{7|u €71 and vtz € 7}.
TEQ, u=1
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In particular, if <%) = —1 then u # v~ 'z, Yu = 1,..., g, therefore

ww =3 (125) =a(123).

If instead (%) = 1, then there exists @ such that @? = z, i.e.

a = ¥ (125 ) w2101 ) = (1)) 2 (100

Putting everything together we get the following expression for the variance o2(m):

4

L E =6)

4

) () ()
@[(z‘i)(iiﬂm'

S
We now turn back to our the original lattice {1,..., N}. Again we can write
2
= (E60) = iy zee )
> (z(3) - @) ()
<N>T€Qs<z€T p (N>w:1 p
S S

In this case, however, the multiplicity function cy(z) can not be handled as
easily as before. In particular, given z € {1,... N}, we denote by I'(z) the set
= {u1,. .., Uqy(z)} given by the u’s in {1,..., N} such that ulr € {l,...,N}. The
cardinality dx(z) of the set I'(z) is a non trivial function of z. It is shown in Fig.
B.lfor1 <z < N. If now (%) = —1, then clearly

en(z) = dy(z) - ( JZ_‘S ) .

On the other hand, if (%) =1 (i.e. 42 = z), then (note that either % € {1,..., N}
or —u € {1,...,N})

en(z) = (dN<a:)—1)-<f_‘§)+(f_‘f).
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Figure B.1: The function dy(z) versus z, for N = 551 and N = 933

We can then use these informations and write

1

(N)z (=) - (le) > v ()

T=

+
VS
VS
w 2
|
-
N~
|
N
w 2
L
N o
N~
N~
<™
—
—_

2

Finally, we have the following expression for the variance o

(m) of the magnetization

m over the space Qg :

o= e ((5)) -

from which one easily gets formula (4.54).
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