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In this paper an extension of the Lintner model (1965) is considered: the problem of
portfolio optimization is studied when short-selling is allowed through the mechanism of
margin requirements. This induces a non-linear constraint on the wealth. When interest
on deposited margin is present, Lintner ingeniously solved the problem by recovering
the unique optimal solution of the linear model (no margin requirements). In this paper
an alternative and more realistic approach is explored: the nonlinear constraint is main-
tained but no interest is perceived on the money deposited against short-selling. This
leads to a fully non-linear problem which admits multiple and unstable solutions very
different among themselves but corresponding to similar risk levels. Our analysis is built
on a seminal idea by Galluccio, Bouchaud and Potters (1998), who have re-stated the
problem of finding solutions of the portfolio optimization problem in futures markets in
terms of a spin glass problem. In order to get the best portfolio (i.e. the one lying on
the efficiency frontier), we have to implement a two-step procedure. A worked example
with real data is presented.

1. Introduction

From the very beginning of capital market theory unrestricted short-sales with
full use of the proceeds have been taken into account. A major contribution
in this field had been given by Lintner ? using a model where the short-sale
proceeds plus 100% margin are deposited with the stock owner, who pays in-
terest on the deposited funds. Assuming the same interest rate for lending and
borrowing, this type of short-selling does not affect the efficiency of the mar-
ket portfolio; the traditional CAPM remains valid. This paper would like to
present an extended version of the Lintner’s model !, still assuming the possi-
bility of long-buying/short-selling but dropping the assumption on interest earned



on deposit. This problem is very similar to that of portfolio selection in future
markets, with some relevant limitations: the model refers to one-period decision,
and the question of updating the constraint because of price variation is ignored.
Clearly in this perspective we should imagine a daily adjustment of the portfo-
lio, because of the double constraint of the margin requirement and the rate of
return.

As already pointed out in a recent paper by Galluccio, Bouchaud and Potters
3. in the case of portfolio problem with a non-linear constraint, the very concept of
rational decision making becomes questionable, due to the presence of concomitant
nonunique and unstable optimal portfolios. More general cases with convex non-
linear constraints in the case of margin accounts or in international capital adequacy
regulation have been considered in references 456,

Here we put forward the analysis, by explicitely considering the differences be-
tween the Lintner’s model, which despite having a non-linear wealth constraint
admits a unique optimal solution, and the full non-linear problem (no interest per-
ceived on the money deposited against short-selling). By considering the issue of
constructing the efficient frontier, we show that a very large number of (quasi) equi-
librium solutions coexists in the model and we argue how any procedure developed
to reach a decision regarding the structure of the portfolio must face this problem.
To be a little bit more precise, if we have N assets available to the investor, for a
fixed expected return R, the number n(N, R) of risk local minima grows exponen-
tially in the number of assets, i.e.:

n(N, R) ~ (BN (1.1)

where w(R) is a positive number depending on expected portfolio return. Since we
have this multiple equilibrium solution (however let us notice that the equilibria are
not equivalent among themselves respect to the level of risk), we have to implement
a second step in the solution procedure in order to get the global risk minimum.
The plan of the paper is the following. In the next Section we introduce a
model of portfolio optimization with short-selling allowed and we explain the non-
linear constraint that is involved. A review of Lintner’s model is presented and
its differences compared to our case are enlightened. In Section 3 we discuss the
solution of the model. First we treat a simplified case, where the portfolio return is
not fixed, showing how multiple solutions appear in connection with the randomness
of empirical correlation matrices constructed from financial return series. Then
the general procedure and analytical calculation needed to construct the efficient
frontier is obtained. We deal with a concrete example in Section 4, considering a
portfolio of 16 common stocks traded on the Nasdaq Market and solving it by means
of computer calculations. We show explicitly the multiple equilibrium solutions and
we discuss the distribution of local risk minima. We calculate the efficient frontier
and a related averaged frontier. This last curve, as discussed in the paper, represents
the decision that an investor will most likely take by searching the optimal solution
with standard methods of combinatorial optimization. We will also reconstruct



and discuss the frontier corresponding to the “worst of the best decisions”, namely

the local minimum with higher risk (at fixed return). As we will see, the risk
function has an exponential number of local minima and one needs to select by
hand the lowest one. Moreover, there is the possibility that portfolios completely
different among themselves correspond almost to the same value of the risk. Finally,
summarizing Conclusions will follow as usual.

2. The Model

Let us start from the standard definitions 7. We consider a hedge-fund as rational
investor agent who has to choose how to allocate his wealth on an unlevered portfolio
P composed of N risky assets (indexed by the subscript i which takes values i =
1,...,N), each of them having expected return r;. Eventually a risk-less asset with
fixed rate of return Ry can be considered, obtaining a so called levered portfolio B,
which is a linear combination of the optimum unlevered portfolio and the risk-less
asset in certain proportions. Let w the ratio of the wealth invested in risky assets
to the total wealth invested. As usual, the measure of the unlevered portfolio risk
is given by the standard deviation op, i.e. by the square root of the variance

N
U% = Z C,'jpipj =pTCp (2.2)

1,j=1

and the unlevered portfolio return is the weighted mean of single assets returns

N
Rp=> piri=p'r (2.3)

i=1

where we have introduced the vectorial notation with 7 to denote the transposed.
Here p = (p1,p2,--.,pN) are the ratio of the investment in the 4-th risky asset to
the investment in all risky assets and Cj; is the matrix of returns variances (i = j)
and covariances (i # j). Obviously, the levered portfolio variance and return are

ok = wiol (2.4)
Rz =(1- w)Rf +wRp (2.5)

The complete portfolio problem is assigned by specifying the wealth constraint. The
simplest case is the linear budget constraint for the unlevered case: Efil p; = 1.
We will instead be interested in the much more complex wealth constraint

N
Yo vilpil=1 (26)
i=1

where +; is the (fixed) margin constraint and p; > 0 or p; < 0, depending on the sign
of the contract (buy or sell respectively). As mentioned in the introduction, this



corresponds to a first order approximation in the case of future markets, where the
short-sale problem is regulated through the mechanism of margin accounts. The
margin is assumed to be the same for each asset, fixed for all operations, and it
does not change over time according to price variations of the underlying assets.
Moreover, the problem of issuing futures on behalf of the financial institution is not
considered. Without loss of generality we can set v; = 1, so that, introducing the
vector s whose components are s; = sign(p;), the budget constrain becomes:

N
dlpil=p"s=1 (2.7)
i=1

We remember the reader that the sign function is defined as sign(z) = 1if z > 0
and sign(z) = —1if z < 0.

2.1. Review of Lintner’s model

The solution of the portfolio optimization problem corresponds to finding the most
efficient investment strategy, i.e. to evaluate proportions p that minimize the risk
0% for a given return Rp. In other words, we would like to calculate the efficient
frontier, that represents the relationship between the risk of the portfolio and the
expected return of the portfolio itself having the best utility for the investor. Thus
to get one point on the efficient frontier, we minimize risk subject to the return
being some level (Rp = R) plus the restriction on the wealth. Then, by varying
the return R, we obtain the entire efficient set. An equivalent procedure is to fix
the risk-less interest rate to some value (Ry = r*) and maximize the ratio 6 of
excess return (expected return minus risk-free rate) to standard deviation under
the wealth constraint. Then, by varying r*, we obtain the whole efficient frontier
8.9, As an example, the simple case of a linear wealth constraint on an unlevered
portfolio (SN | p; = 1) can be easily solved. We have

N
Rf=R;-1=R;Y pi=Rsp'e (2.8)
i=1
where we have defined the vector e = (1,1,...,1). The function § reads

_ R’p — Rf N pT(T — Rfe)

0 2.9
= = Cp (2.9)

and the maximization equations are
—ACp+r—Rse=0 (2.10)

where A is a constant. Defining a new variable z = Ap, the solution is

z=C7Y(r — Rye) (2.11)



where C~! is the inverse of the correlations matrix. Finally the optimum propor-
tions p to invest is obtained by re-scaling z in such a way to satisfy the wealth
constraint ;
= 2.12
P Zfil Zi (212)
The Lintner’s approach to short-selling is basically equivalent to the linear case.
He assumed that when an investor sells stock short, cash is not received but rather
is held as collateral. Furthermore the investor must put up an additional amount
of cash equal to the amount he/she sells short. This leads to the same wealth
constraint as Eq. (2.7). In addition, the short-seller receives interest on both the
money put up against short-sales and the money received from the short-sale. As
a consequence the portfolio return in the Lintner model is

Rp = Z piTi + Z pi(ri — 2Ry) (2.13)

pi>0 pi<0

Using the wealth constraint we can write

N
Ry=R;-1= sz | pi |= Z pilRy — Z pily (2.14)
i=1

pi>0 pi<0

so that the excess return is

Rp— Ry =Y pi(ri — Ry) = p" (r — Rye) (2.15)

i=1

The function 6 is the same as in the linear case and it is an homogeneous function
of degree zero, so that we can proceed as above. The only change that is needed
is a different re-scaling at the end in such a way that the proportions satisfy the

non-linear constraint:
2

_ 2.16
Y|z (216

pi =

2.2. Differences between ours and Lintner’s model

Despite the fact that we use the same wealth constraint as Lintner did, the different
definition of return we are using leads us to completely different results. This is be-
cause the assumption on gaining interests on money deposited against short-selling
is basically equivalent to consider the linear case. In the case we are considering
it is not possible to restate the optimization procedure in terms of the linear case,
since we are eliminating the assumption on interest on deposited money. Using Eq.
(2.3) for the portfolio return and Eq. (2.14), the excess return is

Rp—Ry= Y pi(ri—Rp)+ > pi(ri— Ry) =p"(r — Rys) (2.17)

pi>0 pi <0



so that the function € takes the form

_ Rp—R; _ p"(r—Rys)

0 2.18
- e (2.18)

so that the maximization equations are
—ACp+r—Rps=0 (2.19)

The solution for p is not unique and can not simply be found by inverting the matrix
C because of the presence of the unknown vector s, whose components depends on
p itself. One should then compute all the possible s values and solve Eq.(2.19) for
any of them. Valid solutions are just those for which s = sign(p) actually holds.

3. Solution of the Model

In this Section we will study in details how our model necessarily admits multiple
solutions. Before describing the construction of the efficient frontier, we will first
consider the problem of finding the minimum of the variance subjected to the only
budget constraint (no fixed portfolio return).

3.1. Multiple solutions and the randomness of correlation matrix

We want to minimize the portfolio variance Eq.(2.2) with the non-linear constrain
given by Eq.(2.7). We introduce a Lagrangian function with one Lagrange multiplier
s

L(p,p) =p"Cp — p(p"s — 1) (3.20)

Differentiating with respect to the N 4+ 1 unknowns p and p we obtain the following
equations for the extreme points

1
p= 5/;0713 (3.21)
pls=1 (3.22)

Inserting Eq.(3.21) in Eq.(3.22) we can solve for u and then for p

2
— 1 -1
p= sTC—lsC s (3.24)

Applying the sign function to both sides of the last Equation, we finally obtain
s = sign(C's) (3.25)

where we have used the fact that, since C is a positive definite matrix, the same is
true for C~1, so that s7C~'s > 0 for every value of s.



The original problem has thus been mapped in finding the solution of Eq. (3.25):
once the s; that solve this Equation are known, the shares p; can be calculated
using Eq. (3.24), while the portfolio variance is given by
. 1
op = sTC-1s

Equations like (3.25) have been widely studied in spin glass theory, a branch of
statistical physics 1011, Tt is well-known that Eq. (3.25) admits, for a generic
random matrix C, an exponential number of solution. Moreover these solutions are
“chaotic”, i.e. they are completely different one from another and they completely
change varying the inout parameters and the number of degrees of freedom.

In the portfolio optimization problem the covariance matrix C is not a priori
random, but it is constructed from the historical datas. Nevertheless, since histor-
ical prices/returns movements are generated by market fluctuations, they can be
read as realization of a stochastic process, so that the correlation matrix C' can
be seen as a generic realization of some specific random matrix ensemble. More
informations can be obtained by evaluating the significance of C not in terms of
individual elements, but in terms of a matrix as a whole, i.e. by examining the
spectrum of the eigenvalues/eigenvectors of the matrix itself. The main aim here
is, roughly speaking, to separate the randomness contained in the data from the
real market information. Recently it has been found by two indipendent groups
12,13,14,15 that empirical covariance matrices extracted from financial return series
contains such a high amount of noise that, apart from a few large eigenvalues and
the corresponding eigenvectors, their structure can essentially be regarded as ran-
dom. In !2) e.g., it is reported that in the covariance matrix of 500 assets choosen
on the S&P, only 6% of the eigenvectors, which are responsible for 26% of the total
volatility, appear to carry some information, while the remaining 94% of the spec-
trum can be fitted by that of a random matrix drawn from an appropriate random
ensemble. From this point of view, it should be stressed that Markovitz’s portfolio
scheme, based on a purely historical determination of the correlation matrix, proves
particularly weak, since the elements of the matrix itself are dominated by noise.
Notwithstanding, simulations experiments with random matrices '® show that, in
the context of the classical portfolio problem (minimizing the portfolio variance
under linear constraints) noise has relatively little effect. To leading order the solu-
tions are determined by the stable, large eigenvalues, and the displacement of the
solution due to noise is rather small. The picture is completely different, however, if
we attempt to minimize the variance under non-linear constraint, like those we have
in the problem of short-selling with margin account. In this problem the presence
of noise in the correlation matrix leads to serious instability and a high degree of
degeneracy of the solutions. This will be explicitely shown in Section 4.

All this said about correlation matrix, we can borrow some results from physics
of spin glasses and directly draw some first conclusions from Eq. (3.25)(see also 2):

(3.26)

e At variance with the linear or the Lintner case, where we always find a mini-



mization equation that admits a unique solution, in the present case we have
an exponential number of portfolios for which the risk function has a (local)
minimum. So we face the embarrassment of which solution to choose and we
need to calculate by hand the portfolio variance on each solution to find the
global minimum.

e We can have very different portfolios corresponding to (local) risk minima
having almost the same risk value.

e Adding one asset to the portfolio it radically changes the shape of efficient
portfolios.

3.2. Constructing the efficient frontier

In the previous Section we have shown how multiple solutions naturally arise in the
risk minimization procedure subjected to the non-linear wealth constraint. This
does not say nothing about the efficient frontier (even if it shows the instability of
rational investment decisions). To completely solve the problem, we have to repeat
the minimization of the variance fixing the average return to the value R with an
extra Lagrange multiplier v.

Thus the problem is now to minimize Eq.(2.2) subject to Eq.(2.7) and to the addi-
tional constraint

Rp=p'r=R (3.27)

We introduce the Lagrangian function
L(p,p) =p" Cp—p(p"s —1) —v(p"r - R) (3.28)

Differentiating with respect to the N + 2 unknowns p, p and v we obtain

p= %,uCils + %VC’lr
pls=1
plr=R
(3.29)

Inserting the first equation in the second and the third, we can solve for g and v,
and then for p. Defining

a=sTC"1s
g=rTC s
y=rCc 1y
(3.30)



we obtain the following expressions:

v —Rp
=2—
M=y
y—ofe=p
C Tay - p?
_a-RB .,  Ra-p .,
p_ay—ﬁ2c 8+a7—ﬂ2c r

(3.31)

Applying the sign function to both sides of the last Equation and remembering
that s = sign(p) by definition, we finally obtain

. (y—RB .,  Ra—-p .,
= ——F—C ——7-C 3.32
s = sign (a’y—,b’2 8+a’7—52 r (3.32)
This is the basic equation that substitute Eq.(3.25) in the case of a fixed average
return R.

The general procedure for tracing the N-stocks efficient frontier in the case of
futures markets thus can be summarized as follows:

1. Fix a certain value of the average expected portfolio return R.

2. For this return R solve the system of N equations (3.32) for the vector s =
(s1,82,...,8n). In general the number of solutions n will be exponential in
number of assets N: n ~ e“"V, where the exponential rate w = w(R) depends
on the fixed return R.

3. Calculate the value of the proportions investment p = (p1,p2,---,pN) COI-
responding to each solution of step 2 through formula (3.31) and then the
associated risk. Select the lowest value of the risk and the corresponding
optimum portfolio investment.

4. Increase the return R by a certain (constant) amount and repeat the entire
procedure from step 2 through 4.

4. A Worked Example

In this Section we explicitly treat an example with real data: we demonstrate the
presence of multiple solutions in our problem and we calculate the efficient frontier
by means of computer calculations.

4.1. Data

We considered the case of a portfolio consisting of 16 risky assets. These risky
assets are some common stocks traded on the Nasdaq, in the period October 1,
1998 - November 13, 2000. An historical record of daily prices of these stocks for



Table 1. Rate of Return.

Name Symbol Return

1 Adobe ADO 0.004818
2  Amazon AMA 0.002838
3  Ameritrade AME 0.005522
4 Aol AOL 0.003374
5 Appmc APP 0.008313
6  Broadvis BRO 0.008397
7  Cisco CIS 0.002844
8 Cmgi CMG 0.004129
9 Dell DEL 0.000263
10  Doubleclick DOU 0.004788
11  Ebay EBA 0.005765
12 Inktomy INK 0.004144
13 Intel INT 0.001683
14  Jdsuni JDS 0.005999
15  Microsoft MIC 0.000843
16  Oracle ORA 0.004045
**  Nasdaq Index | NAS 0.001362

the T' = 553 trading days of the period was used to estimate the relevant parameters
- the mean return r; and the variance/covariance matrix C;;. The data source is
DataStream. Calling z(i, k) the price of the i-th asset (where i = 1,...,N) at the
k-th day (where k = 1,...,T), the daily rates of return are:

z(i, k+1) —z(i, k)

i, k) = 4.33
(. ) o (433)
while the formula used to estimate average returns and covariances are:
=
r; = ﬁ 'f'(l,k) (434)
k=1
;] T-!
Cij = g D [r(i k) = ri] [r(G, k) = 5] (4.35)

k=1

The estimated mean returns are given in Table (1), which also lists the stocks by
name, while the variance/covariance matrix is split in Tables (2) and (3).

4.2. Multiple solutions

First of all we analyzed the whole set of possible choices that one obtains for a fixed
value of the return on the portfolio composed by N = 16 assets. We choose to fix the
portfolio return to the value of the average daily Nasdaq index return in the period
we considered: R = Ryas = 0.0014 (i.e. 0.14%). Applying the solving technique
described in the previous Section, we found the solutions § = (51, 82,...,8n) of
the Eq. (3.32) doing an exhaustive enumeration of all the 2%V possible values of
the N-dimensional vector s. We found 6675 3() vectors that satisfy Eq.(3.32).



Table 2. Covariance matrix.

ADO AMA AME AOL APP BRO CIS CMG
ADO | 0.0017655 0.0006738  0.0005875 0.0004569  0.0010777  0.0007906  0.0006333  0.0009492
AMA | 0.0006738 0.0039831 0.0015211 0.0014186  0.0009082 0.0013937  0.0008632  0.0025806
AME | 0.0005875 0.0015211 0.0059604 0.0014733  0.0009082 0.0013879  0.0007159  0.0021351
AOL 0.0004569  0.0014186  0.0014733  0.0018082  0.0006482 0.0010780  0.0006245 0.0017036
APP 0.0010777  0.0009082  0.0009082  0.0006482  0.0038179  0.0016104 0.0011169 0.0017814
BRO 0.0007906  0.0013937  0.0013879  0.0010780 0.0016104 0.0052910 0.0008336  0.0020747
CIS 0.0006333  0.0008632  0.0007159  0.0006245 0.0011169  0.0008336  0.0011323  0.0011854
CMG | 0.0009492 0.0025806  0.0021351 0.0017036  0.0017814  0.0020747  0.0011854  0.0051837
DEL 0.0004815  0.0006627  0.0006693  0.0006179  0.0006952  0.0006867  0.0007166  0.0011147
DOU | 0.0006174 0.0019525 0.0022296  0.0014429 0.0013858 0.0020133  0.0007361  0.0029053
EBA 0.0007485  0.0022906  0.0016129  0.0013104 0.0012851  0.0017050  0.0009150  0.0025681
INK 0.0006859  0.0019766  0.0015506  0.0012455 0.0013270  0.0020950  0.0009573  0.0026140
INT 0.0005465 0.0006466  0.0005004 0.0005156  0.0009470 0.0006798  0.0006638  0.0009792
JDS 0.0007854  0.0008836  0.0009315 0.0007894  0.0016879  0.0013783  0.0010121  0.0015445
MIC 0.0003891  0.0005764  0.0004947  0.0004240 0.0005583  0.0006681  0.0004818  0.0007499
ORA | 0.0007064 0.0008636 0.0007249 0.0005809 0.0011963 0.0009879  0.0007990  0.0012780
Table 3. Covariance matrix (Continued).
DEL DOU EBA INK INT JDS MIC ORA
ADO | 0.0004815 0.0006174 0.0007485 0.0006859  0.0005465 0.0007854 0.0003891  0.0007064
AMA | 0.0006627 0.0019525 0.0022906 0.0019766  0.0006466  0.0008836  0.0005764  0.0008636
AME | 0.0006693 0.0022296 0.0016129  0.0015506  0.0005004 0.0009315 0.0004947  0.0007249
AOQOL 0.0006179  0.0014429 0.0013104 0.0012455 0.0005156  0.0007894  0.0004240  0.0005809
APP 0.0006952  0.0013858  0.0012851  0.0013270  0.0009470 0.0016879  0.0005583  0.0011963
BRO 0.0006867  0.0020133  0.0017050  0.0020950 0.0006798  0.0013783  0.0006681  0.0009879
CIS 0.0007166  0.0007361  0.0009150  0.0009573  0.0006638  0.0010121  0.0004818  0.0007990
CMG | 0.0011147  0.0029053  0.0025681  0.0026140  0.0009792  0.0015445 0.0007499  0.0012780
DEL 0.0014036  0.0007637  0.0008658  0.0008183  0.0007496 0.0006910  0.0005324  0.0005532
DOU | 0.0007637 0.0057720 0.0018463  0.0020844  0.0006473  0.0009491  0.0006221  0.0006542
EBA 0.0008658  0.0018463  0.0050324  0.0023282  0.0006089  0.0010614  0.0005742  0.0008820
INK 0.0008183  0.0020844  0.0023282  0.0046071  0.0007030 0.0012190  0.0005463  0.0009930
INT 0.0007496  0.0006473  0.0006089  0.0007030 0.0011612  0.0008158  0.0004691  0.0006545
JDS 0.0006910  0.0009491  0.0010614 0.0012190 0.0008158  0.0025830  0.0005088  0.0010459
MIC 0.0005324  0.0006221  0.0005742  0.0005463  0.0004691  0.0005088  0.0008008  0.0004617
ORA | 0.0005532 0.0006542  0.0008820  0.0009930  0.0006545 0.0010459 0.0004617  0.0019352




Table 4. Some portfolios corresponding to fixed return R = Ry 45 = 0.0014. The first column is
the “best” portfolio corresponding to the global risk minimum ;7 n & 0.0090. The last column is
the “worst” portfolio corresponding to the highest of the local risk minima 674 x & 0.0162. In the
middle columns there are some portfolios having risk around the average risk value 6 4v g & 0.0100.

Risk 0.0090 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0162
ADO 0.0630 | -0.0070 0.0780 0.0890 0.1070 0.0990 0.1100 0.0720
AMA | -0.0460 | -0.0520 -0.0390 -0.0260 -0.0320 -0.0380 -0.0080 0.0250
AME 0.0150 0.0210 0.0330 -0.0020 -0.0160 0.0170 0.0330 0.0310
AOQOL 0.0820 0.0950 -0.0280 -0.0110 0.1480 0.0900 -0.0180 0.1250
APP 0.0320 0.0600 0.0380 0.0480 0.0660 0.0800 0.0720 0.0280
BRO 0.0390 0.0340 0.0340 0.0260 0.0360 0.0350 0.0410 0.0550
CIS 0.1230 | -0.1610 -0.1770 -0.1570 -0.1280 -0.1720 -0.1460 0.0670
CMG | -0.0450 0.0030 0.0170  -0.0390 -0.0330 0.0020  -0.0440 0.0120
DEL -0.1380 | -0.1600 -0.1520 -0.0800 -0.0390 0.0410 0.1070 0.0000
DOU 0.0220 | -0.0230 -0.0170 0.0320 -0.0150 -0.0280 -0.0100 | -0.1100
EBA 0.0410 0.0490 0.0520 0.0510 0.0460 0.0320 0.0340 0.0420
INK -0.0300 | -0.0320 -0.0290 -0.0250 -0.0280 -0.0300 0.0180 | -0.1640
INT 0.0890 0.0970 0.1010 -0.1090 -0.0760 -0.1470 -0.1140 0.0560
JDS -0.0440 0.0580 0.0630 0.0870 0.0860 0.0820 0.0930 0.0100
MIC -0.1490 0.0900 0.0950 0.1400  -0.1080 0.0800 -0.1360 0.1720
ORA 0.0420 0.0570 0.0470 0.0760 -0.0370 -0.0260 -0.0170 0.0300

From them we calculate the corresponding proportions p¢%) using Eq.(3.31) and the
risk values 6() using Eq.(2.2). Here the index j labels all the local risk minima,
7 =1,2,...,6675. The risk ranges between dyrny ~ 0.0090 and 6p74x =~ 0.0162
and has an averaged risk 6 a4vE ~ 0.0100, where the averaged value is obviously

defined as
66

J

5
L - ()
TAVE = G715 27

j=1

<
Il

We show how the risk values are distributed in Fig.(1), where we plot their proba-
bility density function, i.e. the histogram normalized to have area 1. We see that
most of the risk local minima have a risk value higher than the global risk minimum
OMIN-

It is important to remark that the local minimum which corresponds to the maxi-
mum of the distribution shown in Fig. (1) are in fact the solutions that one would
obtain with very "high probability”. To be more precise, if one consider portfolios
of some bigger dimension, just say 100 assets, then it would be impossible to com-
pute exactly all the local minimum but instead one should rely on other methods.
For example (but not only) one could implement a Monte Carlo algorithm to find
approximated solutions 7. Unfortunately the biggest majority of such solutions will
fall in a very narrow neighborhood of the average risk, so that it would almost im-
possible to end up on the efficient frontier (see also section ). Moreover we observe
that the proportions p can be very different among themselves and from parrn.
This is shown in Table (4) where are reported the portfolio parrny (first column)
corresponding to Gy, the portfolio prrax (last column) corresponding to 6arax
and some portfolios p (middle columns) having a risk value around 64y g-
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Fig. 1. Histogram of the local risk minima. The number of assets is N = 16 and the fixed portfolio
return is the Nasdaq return R = Ry 45 = 0.0014. PDF stands for Probability Density Function.

From a practical point of view, this quasi-degeneracy of the risk value with cor-
responding proportions p very far from each other is the most interesting finding
of this paper. In order to illustrate better this point, we further investigate the
differences between solutions. Let us denote the vector sign of the global minimum
solution sMIN = [¢MIN = gMINY and by § = {31,...,8n} another generic local
minimum solution. A simple number, which describe how different this two solu-
tions are, can be defined basically by counting how many s;’s one must changes
in sign in order to go from one configuration to the other. We call this number
m(sMIN ). Tt can be computed by the following formula

N
1
m(sMIN 3) = 3 (N— E séVHNék>
k=1

and it ranges from 0 (identical sign vectors) to N (opposite sign vectors).

In the top side of Fig.(2) we plot the probability distribution function of the numbers
m;’s, obtained by measuring the number of different signs between any single local
minimum and the global solution: m; = m(sM!V,30)), where 30) runs over all
possible 6675 solutions. In particular, this histogram show clearly that most of the
solutions are in turn very different from the one we would like to calculate a priori,
ie. sMIN,

Actually, a little bit more than this can be said. Roughly speaking, in general two

different local solution might have almost the same risk level but in a strategic-



economic context they can be totally different. This is shown in the bottom side of
Fig.(2) , where the histogram of the number of different signs between all possible
solutions is shown. Summarizing, a multiple choice is available to the investor and
an irreducible component of arbitrariness is present in the final decision.

0.2
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0.1

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16
m

0.2

P(m)

0.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
m

Fig. 2. Top: the distribution of the number of different signs between the configuration sM{N

corresponding to the risk global minimum and the others configurations 5G) corresponding to the
risk local minima. Bottom: the distribution of the number of different signs between all the
configuration 3(4) (including sMIN) corresponding to the risk local minima.

4.3. Exponential growth of solutions in the number of assets

The multiplicity of solutions increases with the number of assets N. We performed
numerical experiments varying N from 5 to 16 keeping the average return R fixed to
Ry as- For each value we calculate the number of local risk minima n(N), i.e. the
number of solutions of Eq. (3.32). As it is clear from Fig.(3) this number growths
exponentially with the number of assets (note the lin-log scale in the graph). The
best numerical fit yields n(N) ~ exp(0.69N). We note that essentially the same
value nyy (N) ~ exp(0.68 N) has been found in reference 2 for the case of 20 assets
of the New York Stock Exchange with no fixed portfolio return.

From the economic point of view, the consequence of this growth is that the ar-
bitrariness degree enlightened above get even bigger by increasing the portfolio
dimension. Moreover we have verified (we do not report data for the sake of space)
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Fig. 3. The number of local risk minima versus the number of assets N. The fixed average return
is the Nasdaq return Ry 45 = 0.0014. The solid line is the best numerical fit n(N) ~ exp(0.69N).

that the multiple solutions have a “chaoticity” property, in the sense that a small
change of the correlation matrix C, or the addition of an extra asset, completely
changes the values of optimal proportions. On the other hand the number of possible
decisions decreases for increasing value of the fixed return R under which minimiza-
tion is performed. We argue this fixing N = 16 and calculating the number of risk
local minima varying the return R in the range [0,0.003]. In Fig.(4) we plot the
number of solutions of Eq.(3.32) corresponding to each R value. We see that the
local risk minimums decreases for increasing value of the return, becoming zero at
R ~ 0.0026. Above these threshold we do not find from Eq.(3.32) any portfolios
satisfying both the budget and the return constrains. One should look for risk min-
ima on the border of the manifold where Lagrange optimization is performed. We
did not investigated this point further.

4.4. The efficient frontier

Here we use the data concerning the 16-stocks in order to compute the efficient
frontier and two more related curves. More precisely, we first allow the averaged
return to range from 0 to 0.003 in 100 constant steps and for each value of the
return we calculated the proportions p corresponding to the risk local minima.
Then, among them we selected the one associated to the risk global minimum and
the one associated to the worst choice, namely the local minimum corresponding to
the portfolio at the very right tail of Fig. (1) . Moreover, for a given fixed return,
we also calculate the averaged risk o 4v . Namely, if n is the total number of local
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Fig. 4. The number of local risk minima versus the average portfolio return. The number of assets
is fixed to N = 16.

minima, for a fixed return R and o) are the associated risks (j = 1,...,n), we

define
1= (.
— _E (9
OAVE n P g

By varying the return R, we use this data to reproduce a kind of averaged efficient
frontier, which is shown in Fig. (5), together with the other two. We checked that,
as one could expect, the proportion of the investment associated to the smallest
and greatest local minima are completely different. Furthermore also the portfolios
corresponding to risk value around the average risk o4y g are very different, yielding
many different equivalent investment strategies.

5. Conclusions

In this paper we have presented a model of portfolio optimization in the case of a
non-linear wealth constraint, that is allowing for long-buying/short-selling of assets
with a fixed margin requirement and no interest on the margin account. In this per-
spective, the model generalizes some relevant results originally obtained by Lintner
who assumed the same non-linear constraint but a different return function, which
takes into account interest on deposit and allows him to recover the linear case.

The dropping of the assumption of perceiving interest makes the optimization pro-
cedure to find the solution very difficult. Firstly, it is not possible to find a unique
solution because of the presence in the minimization equation of a vector composed
by a sequence of +1 (corresponding to buying or selling the single asset), whose or-



0.003

0.002 -

0.001 -

|

0 | - I I I L I
0.005 0.007 0.009 0.011 0.013 0.015 0.017 0.019

g,

P

Fig. 5. Efficient frontiers for the portfolio consisting of 16 assets. The continuous line is the
“best-efficient” frontier corresponding to the lowest value between all the risk local minima. The
dotted line shows the “average-efficient” frontier, i.e. it correspond to the average value of the risk
between all the risk local minima. The dashed line is the “worst-efficient” frontier, constructed
by using the higher values of the risk local minima for each fixed return.

der is undefined. The consequence is that we have multiple solutions corresponding
to local risk minima. The number of these minima is an exponential function of
the number of assets. To face this multiplicity of optimal portfolios, we have imple-
mented a successful numerical procedure to search for the minimum of all minima,
in such a way to find the actual efficient frontier, that will allow to get the best
portfolio in terms of relationship between risk and return. We have applied our
model to a concrete portfolio, formed by 16 assets traded on the Nasdaq. We went
through the whole two-step procedure, obtaining results which may suggest further
efforts to develop the presented model.
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