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We consider optimization problems for complex systems in which the cost function has a
multivalleyed landscape. We introduce a new class of dynamical algorithms which, using
a suitable annealing procedure coupled with a balanced greedy-reluctant strategy drive
the systems towards the deepest minimum of the cost function. Results are presented
for the Sherrington–Kirkpatrick model of spin-glasses.
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1. Introduction

There is a standard barrier in applied science: the computational complexity of
hard (non-polynomial) problems. The modelling of competing interactions among
the components of a large system often leads to consider the solution of a problem as
the minimum of a functional with a complex landscape. The extensive search for the
optimal configurations has a cost that grows too quickly (usually exponentially) and
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become practically intractable when the number of composing units is of the order
of a few hundreds as in the interesting cases. The study of optimizing algorithms
is then a basic step toward the solution of specific practical problems emerging in
different fields of applied science.

In this paper we build a strategy to efficiently explore the landscape of complex
functionals in combinatorial optimization in order to find its minima both local
and global. To allow the reader to better focus on our method, let us describe the
functional to be minimized as the mathematical representation of a quickly changing
mountain profile (in large dimensions), with a high multiplicity of local minima
separated by high barriers. The a priori knowledge of the landscape geometry is
very poor and our strategy to explore the territory in order to find good quality
minima (close to the global one) is to send signals in random directions (initial
configurations), follow their evolution according to a specified dynamics (algorithm)
and collect the observed results. Our investigation procedure is not dissimilar from
an optical instrument in which we may tune a few parameters to better observe the
landscape and find the sites which we are interested in.

The algorithm is preliminary set by choosing the elementary dynamical moves:
this choice reflects the topology that we are associating to our landscape and comes
with a notion of vicinity and nearest neighboring sites. The successive step is to
decide the criteria after which to select among a large multiplicity of moves. This is
done by keeping into account what we search for and what we most fear: we want to
reach the best possible minima as quickly as possible and the worse to happen is to
get stuck in a local minimum which is still far from the optimal or near optimal ones.
It appears rather intuitive that an algorithm with a too steepy descent (greedy) has
a very high risk to get stuck in poor local minima, but at the same time a too slow
descent (reluctant) would cost a very high price in terms of computer time. It
is natural to expect, and indeed it is what we find, an optimal speed of descent
that compromises at best among having a wide exploration basin in a reasonable
amount of time. Yet the danger of remaining caught in wrong local minima remains.
To avoid it we also allow moves which locally and momentarily deviate from the
descending directions. In other terms: to reach a good minimum it is often necessary
to overcome a high barrier. Physically, the introduction of a similar possibility
works like the availability of thermal energy where the probability of its happening
is related to the temperature of the system: the higher the temperature the more
likely are moves upwards and vice versa.

To introduce such a useful strategy we initially allow upward and downward
moves; with the time passing, the probability to go up is progressively decreased at
a rate which we may optimize (this simulates the annealing of a physical system) and
the algorithm will continue evolving according to its downward moves. Our work
and the implementation of the algorithm is built and tested toward a standard
model in combinatorial optimization with origins in condensed matter physics: the
Sherrington–Kirkpatrick (SK) model for the mean field spin glass phase.1,2 Among
the advantages of our approach, there is the flexibility of our algorithms and their
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wide applicability to practical problems like protein folding in biology,2 portfolio
optimization in financial mathematics,3 error correcting codes for digital signal
transmissions.4

2. Results

In the following sections we will present details of the Model and Algorithms we
used in our simulations. Here we summarize the main ideas and results of our
analysis.

In the SK model the cost function is identified with the energy of the system,
the domain of the cost function is the discrete spin configuration space and the
optimization problem amounts to finding the spin configuration with the lowest
energy (ground state). Given a proper definition of distance in the configuration
space (we can think of two spin configurations to be close if they differ only for
a single spin-flip), the energy of the system is a real-valued function forming a
complex and corrugated energy landscape, with valleys (local minima) and peaks
(local maxima). Our optimization algorithms are described as dynamical evolution
rules in this energy landscape which, starting from a random initial condition,
drive the system towards local minima of the energy. The random transition from a
point of the trajectory to the successive, which is a nearest neighboring one, is ruled
by a probability with exponential density. We consider four different algorithms:
starting from the simplest one (Algorithm 0) which allows only energy-decreasing
trajectories, we implement a sequence of refinements (Algorithms 1–3) leading to
more efficient strategies, which exploit also increases in the cost function.

With Algorithm 0 the cost-decreasing trajectory ends up as soon as it reaches
a configuration which, according to our notion of vicinity (see Sec. 3) is a local
minimum. The parameter controlling the transition probability function tunes the
steepness of descents, generating a continuum of behaviors ranging from a reluctant-
type dynamics (very small jumps and slow convergence) to a greedy-type one (very
large jumps deep into a valley).

A first improvement of this strategy, implemented in Algorithms 1 and 2, is
obtained by introducing a “temperature” in the system, which enables random
positive fluctuations of the cost function. This is obtained through the choice of
a transition probability which gives a nonzero weight to upwards moves. With
these choices we have the following scenario for Algorithms 1 and 2: the dynamics
starts with a given initial temperature and equal probability of positive and neg-
ative moves. As the time goes on, the system is gradually cooled until it reaches
a state in which positive fluctuations are forbidden and the dynamics continues
as either greedy or reluctant, depending on the initial temperature. With a high
initial temperature the long term behavior of the dynamics will be greedy-like,
while a low initial temperature will lead to reluctant-type motion. The difference
between Algorithms 1 and 2 lies in the convergence criterium: while the former
stops when the first local minimum is attained (likewise Algorithm 0), the latter
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allows the trajectory to escape from it in view of the possibility to reach deeper
minima (supplementary stopping conditions are required in this case).

A further improvement of the algorithm efficiency is obtained with Algorithm 3.
In this case, the transition probability is designed to model an initially hot system
with high probability of positive moves, which is gradually quenched; when the
system is cool, positive fluctuations are absent and the decreasing trajectories are
forced to follow greedy-like paths. In Fig. 1 typical trajectories for the four different
algorithms are reported.

The efficiency of the algorithms are quantified on one hand by measuring the
average time needed to reach a local minimum, on the other hand by the qual-
ity of the found minima (i.e. how deep they are). The optimization is done by
tuning the parameters which control the transition probabilities; in particular, for
Algorithms 1 and 2 this parameter is mainly the initial temperature, while for
Algorithm 3 it is the rate of the quench, i.e. the speed of convergence to zero of
the temperature of the system. As one would expect, for low initial temperatures
(very low possibility of energy increase), Algorithms 1 and 2 behave very similar to
Algorithm 0. However, their differences become effective for sufficiently high initial
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Fig. 1. Typical trajectories to reach a local minimum configuration for Algorithms 0, 1, 2 and 3.
Note that the trajectories generated by Algorithms 1 and 2 coincide until the first minimum is
reached.
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temperatures. Obviously, allowing positive jumps and escapes from local minima,
the relaxation times increase passing from Algorithm 0 to Algorithm 2; less trivially,
numerical results show that the scaling of the execution times with respect to the
system size is greatly enhanced. This is an important fact, because it suggests that
a crossover between computation times is to be expected for systems with larger
sizes. As regard to the lowest values found, similar conclusions can be drawn: going
from Algorithm 0 to Algorithm 2 deeper minima are attained.

Algorithm 3 can be consistently compared with Algorithm 2, which is the best
performing among the first three. The computation times and their scaling with
the size are similar for the two algorithms when the initial temperature (for Algo-
rithm 2) is high, but a clear enhancement is obtained by Algorithm 3 when it is low.
Also the minimal values of the cost functional are similar for high temperatures,
while they are lower for Algorithm 2 with low initial temperatures. The previous
remarks refer to an experimental protocol in which the search for low cost config-
urations is performed testing a fixed number of trajectories. The minimization of
cost at fixed elapsed computer time is another relevant criterium for the comparison
of the algorithms. In this case the best result is obtained with Algorithm 3, even
though Algorithm 2 gives comparable results.

3. The Model and the Algorithms

3.1. The Sherrington–Kirkpatrick model

The system we study is the SK model of spin-glasses.1 It is defined by the
Hamiltonian

H(J, σ) = − 1√
N

∑
1≤i<j≤N

Jijσiσj , (3.1)

where σi = ±1 for i = 1, . . . , N are Ising spin variables which interact through
couplings Jij . These are Gaussian random variables, independent and identically
distributed with zero mean and variance 1. The random sign (and strength) of
the interaction generates frustration in the system, i.e. the fact that in low energy
configurations some of the couples will have unsatisfied interaction. In particular,
the ground state of the system is far from the standard ground state of ferromag-
netic models, where all spins point in the same direction. The model has been
solved through the replica symmetry breaking ansatz by Parisi,2 while the rigorous
solution is still a debated issue in the mathematical physics community. From the
numerical point of view, the model poses amazing difficulties and indeed it is often
presented as the standard example of NP-problems. Several numerical studies have
tried different algorithms in the search of ground-state energies, for example gradi-
ent descendent,5,6 simulated annealing,7,8 genetic algorithms,9,10 branch-and-bound
algorithm11 and extremal optimization.12–14 The study that we present here does
incorporate in itself the possibility to recover as special cases some of the strategies
used in the above-mentioned works. For example (see Sec. 3.2) our algorithm has
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a gradient descent regime when we subpress the positive energy jumps. On the
other hand, our annealing procedure is a generalization of the standard simulated
annealing whose only optimization parameter is the temperature. We want to stress
that the spirit of this work is to build a flexible algorithm for the investigation of
complex landscapes emerging in NP complete problems. Our purpose is to provide
a useful tool for applications at finite volumes and not the study of the physical
properties of the model, especially the limiting (infinite volume) thermodynamic
properties. On the other hand, once the performance of the algorithm is known for
different volumes the study of the statistical mechanics of the model become more
accessibile. We plan to return to these important topics in a future work.

3.2. Dynamical algorithms

We focus our attention on stochastic dynamics that generates a sequence of spin con-
figurations ending up on a local energy minimum. The smooth interpolation between
greedy and reluctant dynamics studied in previous works15–17 follows an energy-
decreasing trajectory and terminates in the first local minimum it encounters: only
transitions corresponding to a decrease in the cost (energy) function are allowed by
the algorithm. In the same spirit of Simulated Annealing strategies,7 where a slow
decrease of the temperature leads the system through successive metastable states
with lower and lower energy, we think of a class of algorithms which also accept, in
some limited way, transitions corresponding to an increase in the cost function. In
fact, these algorithms are based on the statistical properties of metastable states:
they are organized with some structure so that the evolution dynamics can be con-
sidered as the overlapping of a “fast” motion in the basin of attraction of a local
minimum and of a “slow” motion with jumps between minima (the time of the
dynamics is determined by the energy barriers between these metastable states).

In the algorithms that we are going to introduce, the transition between the spin
configuration at time t, σ(t) = (σ1(t), . . . , σN (t)), and the successive configurations
at time t+1, σ(t+1) = (σ1(t+1), . . . , σN (t+1)) depend on the spectrum of energy
changes of σ(t), obtained by flipping the spin in position i, for i = 1, . . . , N :

∆Ei =
2√
N

σi(t)
∑
j �=i

Jijσj(t). (3.2)

Let us also define ∆Eī = min1≤i≤N ∆Ei that will be used in what follows.
As a first step, let us briefly recall the algorithm studied in Ref. 17, where

only energy decreasing trajectory are considered. It is described by the following
procedure:

Algorithm 0

(1) Initialization: choose an initial spin configuration σ(0) and a parameter value
for λ > 0.
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(2) Generate a random number D with probability density

f(x) =
{

λeλx if x ≤ 0,

0 if x > 0.
(3.3)

(3) Select the site i� associated with the closest energy change to the value D, i.e.

i� : |∆Ei� − D| = min
i∈{1,...,N}

{|∆Ei − D| : ∆Ei < 0}. (3.4)

(4) Flip the spin on site i�:

σi(t + 1) =
{−σi(t) if i = i�,

σi(t) if i �= i�.
(3.5)

(5) If ∆Ei > 0, ∀ i = 1, . . . , N , then the algorithm stops (σ(t) is a local minimum);
otherwise repeat from step 2.

The dynamics generated by this algorithm follows a 1-spin flip decreasing energy
trajectory and arrives at a configuration whose energy cannot be decreased by a
single spin-flip. The control parameter λ in the probability distribution function
for the move acceptance, tunes the speed of convergence to local energy minima:
the larger λ, is the bigger is the probability of doing small energy-decreasing steps,
so that the trajectory will follow an evolution path close to level curves (reluc-
tant) while, small values of λ enrich the probability of large negative energy steps
(greedy), which will quickly drive the dynamics to the endpoint.

As a modification of Algorithm 0 we consider two new algorithms (Algorithms 1
and 2). They generate a dynamics that follows a 1-spin flip trajectory that, in
addition to energy-decreasing transitions, accepts also energy-increasing transitions
with probability exponentially decreasing in time. The difference between the two
is that while the trajectory of Algorithm 1 ends up in the first local minimum it
encounters, in Algorithm 2 it may continue to explore the space of configurations
through the visit of subsequent local minima.

Algorithm 1

(1) Initialization: choose an initial spin configuration σ(0) and parameter values
0 < c1(0) < λ1, 0 < c2 < λ2(0), with the obvious constraint

c1(0)
λ1

+
c2

λ2(0)
= 1. (3.6)

In our simulation we choose λ1 as the only free parameter, by taking λ2(0) = λ1,
c1(0) = λ1/2, c2 = λ1/2. This amounts to start with an equal probabil-
ity of energy decreasing and energy increasing transitions (c1(0)/λ1 = c2/λ2

(0) = 1/2).
(2) Generate a random number D with probability function

ft(x) =
{

c1(t)eλ1x if x ≤ 0,

c2e
−λ2(t)x if x > 0.

(3.7)
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(3) Select the site i� associated with the closest energy change to the value D and
with the same sign, i.e.

i� : |∆Ei� − D| = min
i∈{1,...,N}

{|∆Ei − D| : ∆Ei · D > 0}. (3.8)

(4) Flip the spin on site i�:

σi(t + 1) =
{−σi(t) if i = i�,

σi(t) if i �= i�.
(3.9)

(5) If ∆Ei > 0, ∀ i = 1, . . . , N , then the algorithm stops (σ(t) is a local minimum).
Otherwise, change the parameter λ2(t) of the probability distribution in step 2
with a suitable scheduling, for example

λ2(t) =
λ2(0)

kt
, 0 < k < 1 (3.10)

and return to step 2.

The trajectory generated by Algorithm 1 moves in the energy landscape (by
a succession of moves which decrease and increase energy) till it arrives at a local
minimum. Starting from a symmetric probability distribution for the spin-flip selec-
tion, as time goes on the probability of energy-increasing moves is decreased by the
update rule (3.10).

Next, we want to consider an algorithm as the previous one but with the possibil-
ity of exploring subsequent minima. The problem one has to solve is to give an effi-
cient criterium to stop the dynamics. We considered the following implementation:

Algorithm 2

(1) Initialization: as in Algorithm 1. Set also m = 1000 and ε = 10−4.
(2) Generate a random number D as follows:

with probability function

ft(x) =
{

c1(t)eλ1x if x ≤ 0
c2e

−λ2(t)x if x > 0
if

c1(t)
λ1

≤ m
c2

λ2(t)
(3.11)

and with probability function

f(x) =
{

λ1e
λ1x if x ≤ 0

0 if x > 0
if

c1(t)
λ1

> m
c2

λ2(t)
. (3.12)

(3) Select the site i� associated with the closest energy change to the value D and
with the same sign, i.e.

i� : |∆Ei� − D| = min
i∈{1,...,N}

{|∆Ei − D| : ∆Ei · D > 0}. (3.13)

(4) Flip the spin on site i�:

σi(t + 1) =
{−σi(t) if i = i�,

σi(t) if i �= i�.
(3.14)
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(5) If ∆Ei > 0, ∀ i = 1, . . . , N , and Pt(D ≥ ∆Eī) < ε then Stop.
D is a random number, Pt is the cumulative function of the probability
described in step 2 and ε is a small parameter. In other words, if we arrive
at a minimum and the probability of a significant energy increasing transition
from this local minimum is too small (or even zero when the energy increases
are forbidden, see step 2), then the algorithm stops.

(6) Change the probability distribution (3.11) with the scheduling (3.10) for λ2(t)
(the same scheduling used in Algorithm 1) and return to step 2.

As in Algorithm 1, the dynamics generated by this algorithm follows a 1-spin
flip trajectory making a combination of upwards and downwards moves. How-
ever, in this case, the trajectory does not end up in the first 1-spin flip stable
configuration it encounters, at least as long as the probability of positive moves
(c2/λ2(t)) remains greater than a certain threshold (1/m times the probability
of negative moves c1(t)/λ1 — in our experiments m = 1000). With this strat-
egy it is possible to escape from the local minima to explore the neighboring
space in view of (possible) lower energy minima. When the probability of energy
increases exceed this fixed threshold, from this point on, only decreases in energy
are accepted and so the process terminates when the subsequent local minimum is
reached. In fact, when the process starts at time t = 0 we choose equal probabili-
ties c1(0)/λ1 and c2/λ2(0) of cost-decreasing or cost-increasing moves, respectively,
by settling c2 = λ2(0)/2. As the algorithm continues its execution, we decrease
c2/λ2(t) towards zero, varying the control parameter λ2(t) in accordance with the
above-mentioned law (3.10):

λ2(t) =
λ2(0)

kt
, λ2(0) = λ1, 0 < k < 1

(and keeping fixed λ1) until c1(t)
λ1

≤ m c2
λ2(t) ; as a consequence, the probability of

energy-decreasing move acceptance c1(t)/λ1 tends to one (c1(t) = λ1(1−c2/λ2(t))).
Therefore, while the speed of convergence to the local energy minima is mainly
tuned by λ1, the vanishing velocity of the probability of energy-increasing steps
is governed by the parameter k. Of course, large λ1 (and λ2(t)) lead to evolution
paths generated by small (in absolute value) energy changes (annealed reluctant
dynamics) and the closer k is to 1, the slower λ2(t) grows and then the more energy
increases are enabled. When c1(t)

λ1
> m c2

λ2(t) the dynamics continues governed only
by the parameter λ1, not depending on t.

We see that for Algorithm 2 the possibility to escape from the minima is effec-
tive only when λ1 is sufficiently small (say λ1 � 1, and then λ2(0) � 1, see (3.10)).
For larger values of λ1 the possibility to explore successive minima is not exploited
and both the dynamics 1 and 2 can be expected to give similar results in terms of
achieved minimum energy level. In these cases, the dynamics generated by Algo-
rithm 2 ends up naturally, after t′ steps, in the first minimum it encounters, because
the (step-dependent) probability Pt′ to escape from this configuration is too small;
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therefore, we expect that for large values of λ1 Algorithms 1 and 2 should be
equivalent.

Since for these algorithms the speed of convergence to the finale state is governed
by the probability function ft(x), we can consider a third algorithm in which the
time dependence is present only in the control parameters λi(t), i = 1, 2; in this
case, starting from a (in general) nonsymmetric probability function, the dynamics
evolves gradually towards a final scenario in which the system is cooled by tuning
the control parameter λ1(t).

Algorithm 3

(1) Initialization: choose an initial spin configuration σ(0) and parameter values
λ1(0), λ2(0) such that 1/λ1(0)+1/λ2(0) = 1. Set also m = 1000 and ε = 10−4.

(2) Generate a random number D as follows:
with probability function

ft(x) =
{

eλ1(t)x if x ≤ 0
e−λ2(t)x if x > 0

if
1

λ1(t)
≤ m

1
λ2(t)

(3.15)

and with probability function

f(x) =
{

λ1e
λ1x if x ≤ 0

0 if x > 0
if

1
λ1(t)

> m
1

λ2(t)
. (3.16)

(3) Select the site i� associated with the closest energy change to the value D and
with the same sign, i.e.

i� : |∆Ei� − D| = min
i∈{1,...,N}

{|∆Ei − D| : ∆Ei · D > 0}. (3.17)

(4) Flip the spin on site i�:

σi(t + 1) =
{−σi(t) if i = i�,

σi(t) if i �= i�.
(3.18)

(5) If ∆Ei > 0, ∀ i = 1, . . . , N , and Pt(D ≥ ∆Eī) < ε then Stop (as in Algo-
rithm 2).

(6) Change the probability distribution defined in (3.15) with the same scheduling
for λ2(t) used in Algorithm 2 and return to Step 2.

The main difference between Algorithms 2 and 3 is that in the latter, when
the process starts at time t = 0 we have (if λ1(0) �= 2) different probabilities of
energy-decreasing moves (1/λ1(0)) and of energy-increasing moves (1/λ2(0)). As
Algorithm 3 continues its execution, we decrease 1/λ2(t) towards zero, varying the
control parameter λ2(t) in accordance with the scheduling:

λ2(t) =
λ2(0)

kt
, λ2(0) =

λ1(0)
λ1(0) − 1

, 0 < k < 1 (3.19)

until 1
λ1(t)

≤ m 1
λ2(t) ; as a consequence, the probability of energy-decreasing move

acceptance 1/λ1(t) tends to one
(
λ1(t) = λ2(t)

λ2(t)−1

)
. Therefore, while the speed of
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Fig. 2. Probability density functions for Algorithms 1 and 2 (part (a)) and for Algorithm 3 (part
(b)) for different values of time t. The continuous lines refer to t = 0; the time goes on passing
from broken lines to dotted ones.

convergence to the final state is mainly tuned by the initial value λ1(0) of the time-
dependent parameter λ1(t) (which tends to 1, as time t increases), the vanishing
velocity of the probability of energy-increasing steps is governed by the parameter k.
When 1

λ1(t∗) > m 1
λ2(t∗) the dynamics continues, for t > t∗, governed only by the

parameter λ1 = λ1(t∗) (close to 1) not depending on t. The dynamic evolution of
the probability density functions for Algorithms 1 and 2 compared with Algorithm 3
is reported in Fig. 2.

Summarizing: the control parameters are λ for Algorithm 0, λ1 and k for Algo-
rithms 1 and 2, and λ1(0) and k for Algorithm 3. Varying them we study the
efficiency of the algorithms by measuring the average time to reach a metastable
configuration and the lowest energy value found for different system sizes.

4. Data Analysis

To compare these annealed algorithms with those carried out in previous works15–17

and in particular with Algorithm 0, we performed a set of trials for different values
of N , starting from N initial conditions (for a system of size N) and averaging the
data on nreal = 1000 disorder realizations. We measured two quantities to test the
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performance of the algorithms:

• the average time (i.e. the number of spin flips) to reach a minimum energy level

τ =
1
M

M∑
i=1

ti, (4.1)

with M = N · nreal and ti, i = 1, . . . , M the time for each initial condition;
• the lowest energy found (averaged over disorder)

HN =
〈

minσ HN (J, σ)
N

〉
nreal

, (4.2)

where minσ HN (J, σ) is the minimum value of the energy of the metastable states
attained starting from the set of the N initial conditions.

Our numerical experiments follow two different protocols:

(i) with a fixed number of initial conditions;
(ii) with a fixed elapsed computer time.

The results are described in the following subsections.

4.1. Fixed number of initial conditions

The dynamics of Algorithm 0 has been shown17 to behave as a smooth interpolation
between greedy and reluctant dynamics15 depending on the parameter λ: small λ

(say λ � 1) plays the role of the greedy algorithm, while large λ (say λ � 100) that
of reluctant. In fact, the relaxation time τ(N) grows linearly with the system size
when λ � 1 and quadratically when λ � 100 (see Table 1), as it was previously
observed in Ref. 15 for deterministic greedy and reluctant regimes.

In Fig. 3, which refers to Algorithm 2, we represent τ as a function of N (N ∈
[25, 300]). We performed the analysis for different values of the control parameters.
Due to space constrant, we show only the values λ1 = 1, 10, 100 and three values of
k (k = 0.98, 0.99, 0.995) for each λ1, together with the best numerical fits. Figure 3
shows the progressive increase of the slope in log-log scale from a sub-linear law in
N for λ1 = 1 and k = 0.98 ( �—) to a super-linear one for λ1 = 100 and k = 0.98
(×· · ·). More in detail, the numerical fits of τλ1,k(N) ∼ Na in Fig. 3 are reported in
Table 1.

With the same protocol (fixed number of initial conditions), we measured the
lowest energy HN found by the algorithms. As a general remark we recall that
from a theoretical point of view that the monotonicity in N of the ground state
energy (this follows from sub-additivity18) is proved. For the largest size we have
studied, some values of the simulation parameters give a non-monotone behavior
in N , suggesting that we are not actually finding the true lowest energy state.
A larger number of trials (i.e. initial conditions) would be needed to achieve the
global minimum. However, our principal aim here is not to have a perfect measure
of ground state energies. In Fig. 4 we represent, for Algorithm 2, HN as a function
of N for different values of λ1 and k. The best results for large N are obtained for
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Table 1. Numerical fits of τλ(N) ∼ Na for Algorithm 0 (with the symbols of
Fig. 6) and of τλ1,k(N) ∼ Na for Algorithm 1 and Algorithm 2 (with the symbols
of Fig. 3).

Alg. 0 Alg. 1 Alg. 2

λ a Symbol λ1 k a λ1 k a Symbol

1 1.027 ∗ 1 0.98 0.687 0.98 0.549 �—
0.99 0.630 1 0.99 0.475 +—
0.995 0.592 0.995 0.299 �—

10 1.263 10 0.98 1.041 0.98 1.030 �· · ·
0.99 0.948 10 0.99 0.891 +· · ·
0.995 0.858 0.995 0.687 �· · ·

100 1.932 � 100 0.98 1.724 0.98 1.771 ×· · ·
0.99 1.591 100 0.99 1.691 �· · ·
0.995 1.499 0.995 1.567 ∗· · ·

10

100

1000

10000

10 100 1000

=1,k=.98
=1,k=.99

=1,k=.995
=10,k=.98
=10,k=.99

=10,k=.995
=100,k=.98
=100,k=.99

=100,k=.995

Fig. 3. Average time τ to reach a metastable configuration as a function of N for different values
of λ1 and k for Algorithm 2 and for a fixed number of initial spin configurations.

λ1 = 100 and k = 0.98 which corresponds to annealed reluctant dynamics (as found
for Algorithm 0, see Fig. 5). Therefore, this confirms16,17 that, for a fixed number
of initial spin configurations, the algorithm that makes moves corresponding to the
“smallest” possible energy change keeping the possibility of energy increase only for
the first steps of the algorithm is the most efficient in reaching low-energy states.
Note that, for λ1 = 1 and k = 0.995 the attained energy values are sufficiently
low: even if these results are not better than those for λ1 = 100 (with k = 0.98
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Fig. 4. Lowest energy value HN as a function of N for different values of λ1 and k for Algorithm 2
and for a fixed number of initial conditions.
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Fig. 5. Lowest energy value HN as a function of N obtained using a protocol with a fixed number
of initial conditions for λ = 1 (∗) and λ = 100 (�) for Algorithm 0 and for λ1 = 1 and k = 0.995 (�)
and for λ1 = 100 and k = 0.98 (×) for Algorithm 2.
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10

100

1000

10000

10 100 1000

=1
=100

=1,k=.995
=100,k=.98

=100,k=.995

Fig. 6. Average time τ to reach a metastable configuration as a function of N for λ = 1 (+) and
for λ = 100 (�) for Algorithm 0, and for λ1 = 1 and k = 0.995 (�), for λ1 = 100 and k = 0.98
(×), and for λ1 = 100 and k = 0.995 (∗) for Algorithm 2.

and k = 0.995), they should not be discarded since the average time scales better
(τ (2)

1,0.995(N) ∼ N0.299 instead of τ
(2)
100,0.98(N) ∼ N1.771 or τ

(2)
100,0.995(N) ∼ N1.567).a

Comparing these results with those obtained with the interpolating greedy and
reluctant algorithm (Algorithm 0)17 we note (Figs. 5 and 6 and Table 1) that for
small λ and λ1, Algorithm 2 is better performing than Algorithm 0 both with
respect to average time and energy levels, while for greater λ and λ1 we find com-
parable energy values but with lower cost for the computational time for Algorithm
2 (τ (2)

100,0.98(N) ∼ N1.771 instead of τ
(0)
100(N) ∼ N1.932).

The same analysis is considered also for Algorithm 1. The comparison between
Algorithms 1 and 2 shows that the possibility of exceed the energy barriers between
minima is useful only for small values of λ1 (for λ1 close to 1 Algorithm 2 is more
efficient than Algorithm 1 in reaching lower energy states) while for λ1 ≥ 5 the
performances of Algorithms 1 and 2 are practically indistinguishable (see Figs. 7
and 8). Moreover, we note that the best scaling of the average time τλ1,k with
respect to N is obtained with Algorithm 2 (see Table 1), though for fixed N, λ1

and k, we have τ
(1)
λ1,k < τ

(2)
λ1,k.

aFrom now on, the superscript (x) in the notation of the average time τ (x) will refer to the number
of the corresponding algorithm.
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Fig. 7. Lowest energy value HN as a function of N for λ1 = 1 and different values of k, for
Algorithms 1 and 2.
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Fig. 8. Lowest energy value HN as a function of N for λ1 = 10 and for different values of k
obtained with Algorithms 1 and 2.
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100

1000

10 100 1000

Fig. 9. Average time τ to reach a metastable configuration as a function of N for different values
of λ1(0) and k for Algorithm 3, together with the best numerical fits for a fixed number of initial
conditions. We represent λ1(0) = 2 (k = 0.98 ( �—), k = 0.99 (+—) and k = 0.995 (�—), λ1(0) = 10
(k = 0.98 ( �· · ·), k = 0.99 (+· · ·) and k = 0.995 (�· · ·)) and λ1(0) = 100 (k = 0.98 (×· · ·), k = 0.99 (�· · ·)
and k = 0.995 ( ∗· · ·))

Figures 9 and 10 show the results of the analysis of Algorithm 3 with a fixed
number of initial conditions: N ∈ [25, 400] for three distinct values of λ1(0) (λ1(0) =
2, 10, 100) and for four values of k (k = 0.98, 0.99, 0.995, 0.997) for each λ1(0).
Because of high computational costs (which increase with λ1(0) and k), the cases
N = 350 and N = 400 for λ1(0) = 100 are only partially studied. For the same
reason also the case k = 0.997 is considered only for λ1(0) = 2.

Figure 10 shows that Algorithm 3 seems to depend weakly on the parameter
λ1(0), its behavior being mainly ruled by k. In fact, the lines of the HN values
corresponding to the same choices of k are grouped into narrow bands well separated
from one another. Moreover, a closer look to Fig. 10 shows that the best result for
HN is obtained for λ1(0) = 2 and k = 0.997. Note that for any λ1(0), the closer the
values of k to one, the lower the values of energy: slow growths of the parameter
λ2(t) enable energy increases and then the possibility to exceed the energy barriers.
Even though Algorithm 2 is slightly better performing (λ1 = 100, k = 0.98 see
Fig. 4) in terms of minimum energy level reached, the best scaling of τλ1(0),k(N) is
obtained by Algorithm 3. In fact, for Algorithm 3 we note (Fig. 9 and Table 2) the
progressive increase of the slope in log-log scale from a scaling law τ

(3)
λ1(0),k(N) ∼

N0.22 for λ1(0) = 100 and k = 0.995 ( ∗· · ·) to τ
(3)
λ1(0),k(N) ∼ N0.53 for λ1(0) = 2 and
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Fig. 10. Lowest energy value HN as a function of N for different values of λ1(0) and k for
Algorithm 3 and for a fixed number of initial conditions.

Table 2. Numerical fits of τλ1(0),k(N) ∼ Na for
Algorithm 3.

λ1(0) k a Symbol

2 0.98 0.531 �—
0.99 0.509 +—
0.995 0.379 �—
0.997 0.272 ∗—

10 0.98 0.352 �· · ·
0.99 0.304 ·+·
0.995 0.225 ·�· ·

100 0.98 0.321 ×· · ·
0.99 0.289 ·�· ·
0.995 0.220 ∗· · ·

k = 0.98 ( �—). More in detail, the numerical fits of τλ1(0),k(N) ∼ Na for Algorithm
3 are reported in Table 2.

To conclude the analysis of the protocol with a fixed number of initial conditions
we can say that taking into account also the average time τ , the best performing
algorithm in reaching minimum energy level is Algorithm 3 (Fig. 11). In fact, Algo-
rithm 3 with λ1(0) = 2 e k = 0.997 attains minimum energy levels comparable with
those obtained by the other algorithms with λ and λ1 equal to 100 but with lower
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Fig. 11. Lowest energy value HN as a function of N for λ = 100 (�) for Algorithm 0, for λ1 = 100
and k = 0.98 (�) for Algorithm 1 and (×) for Algorithm 2 and for λ1(0) = 2 and k = 0.997 (∗)
for Algorithm 3.

computational costs (τ (3)
2,0.997 ∼ N .272 while τ

(0)
100 ∼ N1.932, τ

(1)
100,0.98 ∼ N1.724 and

τ
(2)
100,0.98 ∼ N1.771, see Tables 1 and 2).

4.2. Fixed elapsed computer time

Finally, we analyze the lowest energy states found by the dynamics varying the con-
trol parameters for a given elapsed running time for all algorithms. In Fig. 12 we con-
sider the minimum energy values HN , obtained by choosing different system sizes
N and, for each of them, different parameter values (λ = 1, 10, 100 for Algorithm 0,
λ1 = 1, 5, 10, 100 for Algorithm 1, λ1 = 1, 10 for Algorithm 2 and λ1(0) = 2, 10, 100
for Algorithm 3) with different annealing scheduling each (k = 0.98 and k = 0.995
for Algorithms 1 and 2, k = 0.995 and k = 0.997 for Algorithm 3), for a fixed time
of 50 h of CPU on a IBM SP4. For Algorithm 2 we consider in detail mainly the
case (λ1 = 1) in which the dynamics behaves differently from that generated by
Algorithm 1. Each run (i.e. for fixed N and for fixed control parameter) consists
of 1000 disorder realizations, with the same CPU time length (3 min.) assigned
to each sample, in order to compare these results with Refs. 15–17. With all this
dynamics, for N ≤ 150, we can find the ground state of the system, since varying
the control parameters and independently on the algorithm used, the values of HN

coincide, within our numerical accuracy (10−10). The best result is obtained with
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Fig. 12. Lowest energy value HN as a function of N for different values of control parameters for
Algorithms 0, 1, 2 and 3, for a fixed CPU time of 50 h on a IBM SP4. The symbol (+) refers to
λ = 10 for Algorithm 0, (�) to λ1 = 10 and k = 0.98 for Algorithm 1, (�) to λ1 = 1 and k = 0.995
for Algorithm 2 and (×) for λ1(0) = 2 and k = 0.997 for Algorithm 3.

Algorithm 3 for the case λ1(0) = 2 and k = 0.997 (even though the result provided
by Algorithm 2 for λ1 = 1 and k = 0.995 is comparable). Note that, for Algorithm 1
the best result is for λ1 = 10 and k = 0.98 in good agreement with the best result
of Algorithm 0 obtained for λ = 10 (Fig. 12). Moreover, it is worthnoting that the
values HN obtained with Algorithm 3 for the case λ1(0) = 2 and k = 0.997 are the
best (for fixed CPU time) with respect to all algorithms we consider in the present
paper and in Refs. 15–17.
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2. M. Mézard, G. Parisi and M. A. Virasoro, Spin Glass Theory and Beyond (World
Scientific, 1987).

3. J.-P. Bouchaud and M. Potters, Theory of Financial Risk (Alea-Saclay, 1997).
4. H. Nishimori, Statistical Physics of Spin Glasses and Information Processing (Oxford

Univ. Press, 2001).
5. F. T. Bantilan and R. G. Palmer, Magnetic properties of a model spin glass and the

failure of linear response theory, J. Phys. F11 (1981) 261–266.
6. S. Cabasino, E. Marinari, P. Paolucci and G. Parisi, Eigenstates and limit cycles in

the SK model, J. Phys. A: Math. Gen. 21 (1988) 4201–4210.
7. S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, Optimization by simulated annealing,

Science 220 (1983) 671–680.
8. G. S. Grest, C. M. Soukoulis and K. Levin, Cooling-rate dependence for the spin-glass

ground-state energy: Implications for optimization by simulated annealing, Phys. Rev.
Lett. 56 (1986) 1148–1151.

9. J.-P. Bouchaud, F. Krzakala and O. C. Martin, Energy exponents and corrections to
scaling in Ising spin glasses, Phys. Rev. B68 (2003) 224404.

10. M. Palassini, Ground-state energy fluctuations in the Sherrington–Kirkpatrick model,
cond-mat/0307713.

11. S. Kobe, Ground-state energy and frustration of the Sherrington–Kirkpatrick model
and related models, cond-mat/0311657.

12. S. Boettcher and A. G. Percus, Optimization with extremal dynamics, Phys. Rev.
Lett. 86 (2001) 5211–5214.

13. S. Boettcher and P. Sibani Comparing extremal and thermal explorations of energy
landscapes, cond-mat/0406543.

14. S. Boettcher, Extremal Optimization for the Sherrington–Kirkpatrick spin glass, cond-
mat/0407130.

15. L. Bussolari, P. Contucci, M. Degli Esposti and C. Giardinà, Energy-decreasing
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