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We provide a very simple proof for the existence of the thermodynamic limit for
the quenched specific pressure for classical and quantum disordered systems on a d-
dimensional lattice, including spin glasses. We develop a method which relies simply on
Jensen’s inequality and which works for any disorder distribution with the only condition
(stability) that the quenched specific pressure is bounded.
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1. Introduction, Definitions and Results

In this paper we study the problem of the existence of the thermodynamic limit

for a wide class of disordered models defined on finite dimensional lattices. We

consider both the classical and quantum case with random two-body or multi-body

interaction. The classical case has been studied in various places (see for example [4–

8]). In [4] and [7], the quantum case with pair interactions has also been considered.

Here we deal only with the quenched pressure. Using only thermodynamic convexity

and a mild stability condition, we give a very simple proof of the existence and

monotonicity of the quenched specific pressure. A result in the same spirit for

classical spin glasses has been obtained in [1] by using an interpolation technique

introduced in [2, 3]. The present work extends the results of [1] not only to the

quantum case, but also to the classical case with a nonzero mean of the interaction

and to the continous spin space.

We shall treat the classical and quantum cases in parallel. In the classical case

to each point of the lattice i ∈ Zd, we associate a copy of the spin space S, which
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is equipped with an a priori probability measure µ. We shall denote this by Si. In

the quantum analogue, we associate to each i ∈ Zd a copy of a finite dimensional

Hilbert space H, denoted by Hi and a set of self-adjoint operators, spin operators,

on Hi.

Following [9] (see also [10]), we define the interaction in the following way. In the

classical case for each finite subset of Zd, X , we let SX := ×i∈XSi and {Φ
(j)
X | j ∈

nX} is a finite set of bounded functions from SX to R which are measurable with

respect to the product measure µ|X| on SX . In the quantum case, each Φ
(j)
X is a self-

adjoint element of the algebra generated by the set of operators, the spin operators

on HX := ⊗i∈XHi. Without loss of generality, we set Φ∅ = 0. In both cases, we

take the interaction to be translation invariant in the sense that if τa is translation

by a ∈ Zd, then

nτaX = nX and Φ
(j)
τaX = τaΦ

(j)
X for j ∈ nX . (1)

We now define the random coefficients. For each X , let {J
(j)
X | j ∈ nX} be a set of

random variables. We assume that the J
(j)
X ’s are independent random variables and

that J
(j)
τaX and J

(j)
X have the same distribution for all a ∈ Zd. We shall denote the

average over the J ’s by Av[·].

Let Λ ⊂ Zd be a finite set of a regular lattice in d dimensions and denote by

|Λ| = N its cardinality. We define the random potential as

UΛ(J, Φ) :=
∑

X⊂Λ

∑

j∈nX

J
(j)
X Φ

(j)
X . (2)

We stress here that the distributions of the J
(j)
X ’s are independent of the volume

Λ. This characterizes the short range case, such as the Edwards–Anderson model.

In mean field (long range) models, such as the Sherrington–Kirkpatrick model in

which the Hamiltonian sums over all the couples (N 2 terms), the variance of J
(j)
X

has to decrease like N−1 in order to have a well defined thermodynamic behavior

and in particular a finite energy density. The complete definition of the model we

are considering requires that we specify also the interaction on the frontier ∂Λ, i.e.

boundary conditions. However, standard surface over volume arguments imply that

if the quenched specific pressure for one boundary condition converges, then it also

converges for all other boundary conditions. Therefore, to prove the convergence

of the quenched specific pressure, it is sufficient to consider the free boundary

condition. Thus in the sequel, we shall assume the free boundary condition and

prove that in this case the quenched pressure is monotonically increasing in the

volume.

We would like to emphasize the fact that in the classical case, our results are not

restricted to the situation when the space S consists of a finite number of points.

Here we also want to cover the case of continuous spins and therefore we shall keep

the classical and quantum cases separate. Of course, both cases can be covered

simultaneously in a C∗ algebra setting but for the sake of simplicity, we shall not

take this route.
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Example 1 (Classical Edwards–Anderson Model). S = {−1, 1}, µ(σi) =
1
2δ(σi + 1) + 1

2δ(σi − 1). The interaction is only between nearest neighbors:

Φi,j(σi, σj) = σiσj for |i − j| = 1, ΦX = 0 otherwise. To ensure that the spe-

cific pressure is bounded, it is enough that

Av[|Jij |] < ∞ . (3)

More generally, one may consider a long range interaction with Φi,j(σi, σj) =

σiσj/R(|i − j|) with a sufficient condition for boundedness, for example

Av[J0i] = 0 and
∑

i

Av[|J0i|2]

(R(|i|))2
< ∞ , (4)

or a many-body interaction with a suitable decay law. One can also add a (random)

external field.

We refer the reader to [1] for more classical examples.

Example 2 (Quantum Edward–Anderson Model). H = C2. The spin oper-

ators are the set of the Pauli matrices: σi = (σx
i , σy

i , σz
i ),

σx =

(

0 1

1 0

)

, σy =

(

0 −i

i 0

)

, σz =

(

1 0

0 −1

)

(5)

with commutation and anticommutation relations

[ σα
i , σβ

i ] = 2iεαβγσγ
i , (6)

{σα
i , σβ

i } = 2δαβ . (7)

The interaction is again only between nearest neighbors: Φi,j(σi, σj) = σi · σj =

σx
i σx

j +σy
i σy

j +σz
i σz

j for |i−j| = 1, ΦX = 0 otherwise. A transverse field Φi(σi) = σz
i

can also be added. One can have an asymmetric version with local interaction

Jx
i,jΦ

x
i,j(σi, σj) + Jy

i,jΦ
y
i,j(σi, σj) + Jz

i,jΦ
z
i,j(σi, σj) , (8)

where Φx
i,j(σi, σj) = σx

i σx
j , Φy

i,j(σi, σj) = σy
i σy

j and Φz
i,j(σi, σj) = σz

i σz
j . As in

Example 1, one may consider a short range interaction with a suitable decay law.

Notation. We shall use the notation Tr to denote both the classical expectation

over SN with the measure µ(dσ) =
∏N

i=1 µ(dσi) and the usual trace in quantum

mechanics on the Hilbert space ⊗N
i=1H.

Definition 1. We define in the usual way:

(1) the random partition function, ZΛ(J), by

ZΛ(J) := Tr eUΛ(J,Φ) ; (9)

(2) the quenched pressure, PΛ, by

PΛ := Av[ln ZΛ(J)] ; (10)
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(3) the quenched specific pressure, pΛ, by

pΛ :=
PΛ

N
. (11)

We are now ready to state our main theorem as follows.

Theorem 1. If all the J
(j)
X ’s with |X | > 1 have zero mean, then the quenched

pressure is superadditive

PΛ ≥
n
∑

s=1

PΛs
. (12)

Let ‖Φ
(j)
X ‖ denote the supremum norm in the classical case and the operator norm

in the quantum case. For the case when the J
(j)
X ’s do not have zero mean, we have

the following corollary.

Corollary 1. Let

P̄Λ = PΛ +
∑

X⊂Λ, |X|>1

∑

j∈nX

|Av[J
(j)
X ]| ‖Φ

(j)
X ‖ . (13)

Then P̄Λ is superadditive.

Theorem 1 combined with the boundedness of the specific pressure is sufficient to

ensure the convergence of the specific pressure in the thermodynamic limit (see for

example [9, Chap. IV]) in the case when all the J
(j)
X ’s with |X | > 1 have zero mean.

In the case when the J
(j)
X ’s do not have zero mean, we have to add to Corollary 1

the condition

C :=
∑

X30, |X|>1

∑

j∈nX

|a
(j)
X |‖Φ

(j)
X ‖

|X |
< ∞ . (14)

This implies that

lim
Λ→∞

1

N

∑

X⊂Λ, |X|>1

∑

j∈nX

|a
(j)
X |‖Φ

(j)
X ‖ = C (15)

and therefore the convergence of the specific pressure.

To prove the boundedness of the specific pressure, we need the following stability

condition (cf. [8]). Let

‖U‖1 :=
∑

X30

∑

j∈nX

Av
[

|J
(j)
X |
]

‖Φ
(j)
X ‖

|X |
(16)

and

‖U‖2 :=

(

∑

X30

∑

j∈nX

Av[|J
(j)
X |2]‖Φ

(j)
X ‖2

|X |

)
1

2

. (17)
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Definition 2. We shall say that the random potential U(J, Φ) is stable if it is of

the form

UΛ(J, Φ) = ŨΛ(J̃ , Φ̃) + ÛΛ(Ĵ , Φ̂) , (18)

where all the J̃
(j)
X ’s and Ĵ

(j)
X ’s are independent, the Ĵ

(j)
X ’s have zero mean and ‖Ũ‖1

and ‖Û‖2 are finite.

With this definition, we shall prove in the next theorem that the specific pressure

is bounded. Note that the stability condition in Definition 2 implies that C as

defined in (14) is finite since C ≤ ‖U‖1.

Theorem 2. For a stable random potential , the quenched specific pressure is

bounded.

In the next section we prove the theorems.

2. Proof of the Theorems

We start with the following definition.

Definition 3. Consider a partition of Λ into n nonempty disjoint sets Λs

Λ =
n
⋃

s=1

Λs , (19)

Λs ∩ Λs′ = ∅ . (20)

For each partition, the potential generated by all interactions among different sub-

sets is defined as

ŨΛ := UΛ −
n
∑

s=1

UΛs
. (21)

From (2) it follows that

ŨΛ =
∑

X∈CΛ

∑

j∈nX

J
(j)
X Φ

(j)
X , (22)

where CΛ is the set of all X ⊂ Λ which are not subsets of any Λs.

The idea here is to eliminate ŨΛ from the partition function. We shall use the

following three lemmas.

Lemma 1. Let X1, . . . , Xn be independent random variables with zero mean. Let

F : Rn 7→ R be such that for each i = 1, . . . , n, xi 7→ F (x1, . . . , xn) is convex , then

E[F (X1, . . . , Xn)] ≥ F (0, . . . , 0) , (23)

where E denotes the expectation with respect to X1, . . . , Xn.

Proof. This follows by applying Jensen’s Inequality to each Xi successively.
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The following two lemmas are related to the thermodynamic convexity of the

pressure.

Lemma 2. Let µ be a probability measure on a space Ω, and let A and B1, . . . , Bn

be measurable real-valued functions on Ω. Then

E

[

log

∫

Ω

exp

{

A(σ) +

n
∑

i=1

XiBi(σ)

}

µ(dσ)

]

≥ log

∫

Ω

exp[A(σ)]µ(dσ) . (24)

Proof. We just have to check that if

F (x1, . . . , xn) = log

∫

Ω

exp

{

A(σ) +

n
∑

i=1

xiBi(σ)

}

µ(dσ) ,

then xi 7→ F (x1, . . . , xn) is convex. Let

〈C〉 :=

∫

Ω C(σ) exp{A(σ) +
∑n

i=1 xiBi(σ)} µ(dσ)
∫

Ω exp{A(σ) +
∑n

i=1 xiBi(σ)} µ(dσ)
. (25)

Then, computing the derivatives, we have

∂F

∂xi

= 〈Bi〉 (26)

and

∂2F

∂x2
i

=
〈

B2
i

〉

− 〈Bi〉
2 =

〈(

Bi − 〈Bi〉
)2〉

≥ 0 . (27)

The next lemma is the quantum analogue of the previous one.

Lemma 3. Let H be finite-dimensional Hilbert space, and let A and B1, . . . , Bn be

self-adjoint operators on H. Then

E

[

log Tr exp

(

A +
n
∑

i=1

XiBi

)]

≥ log Tr exp A . (28)

Proof. Again we just have to check that if

F (x1, . . . , xn) = log Tr exp

(

A +

n
∑

i=1

xiBi

)

,

then xi 7→ F (x1, . . . , xn) is convex. The first derivative gives

∂F

∂xi

= 〈Bi〉 , (29)

where

〈C〉 :=
TrCe−H

Tr e−H
(30)
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with

−H = A +

n
∑

i=1

xiBi

while, for the second derivative, we have

∂2F

∂x2
i

= (Bi, Bi) − 〈Bi〉
2 , (31)

where (·, ·) denotes the Du Hamel inner product (see for example [10])

(C, D) :=
Tr
∫ 1

0 ds e−sHC∗e(1−s)HD

Tr e−H
. (32)

By using the fact that (C, 1) = 〈C〉 and (1, D) = 〈D〉, we see that

∂2F

∂x2
i

= (Bi − 〈Bi〉, Bi − 〈Bi〉) ≥ 0 . (33)

Proof of Theorem 1. Let us assume first that all the J
(j)
X ’s with |X | > 1 have

zero mean.

PΛ = Av[ln Tr expUΛ]

= Av

[

ln Tr exp

(

n
∑

s=1

UΛs
+
∑

X∈CΛ

∑

j∈nX

J
(j)
X Φ

(j)
X

)]

. (34)

Note that CΛ does not contain any X with |X | = 1. Applying Lemma 2 (resp.

Lemma 3) for the classical (resp. quantum) case with A =
∑n

s=1 UΛs
, Bi = Φ

(j)
X

and n =
∑

X∈CΛ
nX , we get

PΛ ≥ Av

[

ln Tr exp

(

n
∑

s=1

UΛs

)]

=
n
∑

s=1

Av[ln Tr expUΛs
] =

n
∑

s=1

PΛs
. (35)

Proof of Corollary 1. Here we relax the condition that all the J ’s have zero mean.

Let a
(j)
X := Av[J

(j)
X ] and J̄

(j)
X := J

(j)
X − a

(j)
X for |X | > 1, so that J̄

(j)
X has zero mean

and J̄
(j)
X := J

(j)
X if |X | = 1. Let

U
(1)
Λ (J, Φ) :=

∑

X⊂Λ

∑

j∈nX

J̄
(j)
X Φ

(j)
X , (36)

U
(2)
Λ (J, Φ) :=

∑

X⊂Λ, |X|>1

∑

j∈nX

(

a
(j)
X Φ

(j)
X + |a

(j)
X |‖Φ

(j)
X ‖
)

(37)

and

ŪΛ(J, Φ) := U
(1)
Λ (J, Φ) + U

(2)
Λ (J, Φ) . (38)
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Then

ŪΛ(J, Φ) = UΛ(J, Φ) +
∑

X⊂Λ, |X|>1

∑

j∈nX

|a
(j)
X |‖Φ

(j)
X ‖ . (39)

Thus P̄Λ is the pressure corresponding to ŪΛ(J, Φ). One can then see that P̄Λ is

superadditive by treating the terms in U
(1)
Λ (J, Φ) as before, since each J̄

(j)
X has

zero mean, except possibly if |X | = 1, and by using the fact that all the terms in

U
(2)
Λ (J, Φ) are positive (cf. [10]). In the quantum case, we need the inequality

Tr e(A+B) ≥ Tr eA (40)

if B is a positive operator.

Proof of Theorem 2. The proof in the classical case is given in [8]. Here we

modify that proof to cover the quantum case. From the Bogoliubov inequality

Tr(A − B)eB

Tr eB
≤ ln Tr eA − ln Tr eB ≤

Tr(A − B)eA

Tr eA
(41)

with A = UΛ(J, Φ) and B = 0 we get

log ZΛ(J) − N log dimH ≤
TrUΛ(J, Φ)eUΛ(J,Φ)

Tr eUΛ(J,Φ)

=
Tr ŨΛ(J̃ , Φ̃)eUΛ(J,Φ)

Tr eUΛ(J,Φ)
+

Tr ÛΛ(Ĵ , Φ̂)eUΛ(J,Φ)

Tr eUΛ(J,Φ)

≤ ‖ŨΛ(J̃ , Φ̃)‖ +
Tr ÛΛ(Ĵ , Φ̂)eUΛ(J,Φ)

Tr eUΛ(J,Φ)
. (42)

Now

Av[‖ŨΛ(J̃ , Φ̃)‖] ≤ N‖Ũ(J̃ , Φ̃)‖1 . (43)

For the other term, we use the identity for A and B self-adjoint

TrAeA+B

Tr eA+B
−

TrAeB

Tr eB
=

∫ 1

0

dt(A − 〈A〉t, A − 〈A〉t)t , (44)

where 〈·〉t and (·, ·)t denote the mean and the Du Hamel inner product, respectively

with respect to H = −(tA + B). The Du Hamel inner product satisfies

(C, C) ≤
1

2
〈C∗C + CC∗〉

1

2 ≤ ‖C‖2 . (45)

Therefore

TrAeA+B

Tr eA+B
−

Tr AeB

Tr eB
≤ 4‖A‖2 . (46)
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With A = Ĵj
X Φ̂j

X and B = UΛ(J, Φ) − Ĵj
X Φ̂j

X we get

Tr ÛΛ(Ĵ , Φ̂)eUΛ(J,Φ)

Tr eUΛ(J,Φ)
=
∑

X⊂Λ

∑

j∈n̂X

Tr Ĵj
X Φ̂j

XeUΛ(J,Φ)

Tr eUΛ(J,Φ)

≤
∑

X⊂Λ

∑

j∈n̂X

Tr Ĵj
X Φ̂j

X

eUΛ(J,Φ)−Ĵ
j

X
Φ̂j

X

Tr eUΛ(J,Φ)−Ĵ
j

X
Φ̂j

X

+ 4
∑

X⊂Λ

∑

j∈n̂X

|Ĵj
X |2‖Φ̂j

X‖2 . (47)

Thus since UΛ(J, Φ) − Ĵj
X Φ̂j

X is independent of Ĵj
X and Av

[

Ĵj
X

]

= 0,

Av

[

Tr ÛΛ(Ĵ , Φ̂)eUΛ(J,Φ)

Tr eUΛ(J,Φ)

]

≤ 4
∑

X⊂Λ

∑

j∈n̂X

Av
[

|Ĵj
X |2
]

‖Φ̂j
X‖2 ≤ 4N‖Û(Ĵ , Φ̂)‖2

2 . (48)

Therefore

PΛ ≤ N(log dimH + ‖Ũ(J̃ , Φ̃)‖1 + 4‖Û(Ĵ , Φ̂)‖2
2) . (49)
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